
QUDA FEATURES, SCALING  
AND SOLVERS

NVIDIA

Q
U
D
A

Introducing QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source)
• Effort started at Boston University in 2008, now in wide use as

the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.
• Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector solvers (Lanczos, EigCG, GMRES-DR) (see talk by A. Strelchenko)
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale

http://lattice.github.com/quda

Q
U
D
A

QUDA collaborators
§ Ron Babich (NVIDIA)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Nuno Cardoso (NCSA)
§ Michael Cheng (Boston University)
§ Justin Foley (Utah -> NIH)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Steve Gottlieb (Indiana University)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Mario Schröck (INFN)
§ Alexei Strelchenko (FNAL)
§ Alejandro Vaquero (INFN)
§ Mathias Wagner (Indiana University -> NVIDIA)
§ Frank Winter (UoE -> Jlab)

Q
U
D
A

QUDA Features
▪ Latest release 0.7.1 (10th June 2015)
▪ Dirac operators supported
▪ Wilson, Wilson-clover, staggered, improved staggered, twisted mass,  

non-degenerate twisted mass, twisted-clover, domain wall (4-d / 5-d), Mobius
▪ Mixed-precision solvers
▪ CG, BiCGstab, GCR
▪ double, single, half precision
▪ 0.7 introduced a huge improvement in mixed-precision CG
▪ Link smearing and fermion force routines
▪ GPU-aware MPI and GPU Direct RDMA support
▪ Eigenvector solvers
▪ Improved strong scaling

Q
U
D
A

QUDA 0.8 (end of summer)
▪ Gauge Fixing
▪ Overrelaxation and FFT methods
▪ Pure gauge evolution algorithms
▪ Heatbath and overrelaxation
▪ 4-d multi-GPU random generator
▪ Improved strong scaling
▪ Improved performance of many algorithms

QUDA 0.9
▪ Mixed-precision eigenvector deflation
▪ Adaptive multigrid
▪ Multi-rhs solvers

Q
U
D
A

Improving Strong Scaling
▪ Communication-reducing solvers available but
▪ Not always applicable: staggered, multi-shift, etc.
▪ Regular multi-GPU dslash becomes performance limiter
▪ GPUs perhaps have a reputation of limited strong scaling

▪ Surprising observation (prior to QUDA 0.7)
▪ PCIe generation 3: doubling in PCIe bandwidth
▪ Negligible improvement in performance
▪ GPUDirect RDMA: reduces latency by a factor of three
▪ Negligible improvement in performance

▪What is the performance limiter?

What is limiting strong scaling?

Packing 
kernel

Host to 
device

Interior  
update

Device to 
host

Halo updates

Screen shot from visual profiler (QUDA 0.6, K40, PCIe gen2, wilson dslash, single precision, V=164)

Packing 
kernel

Host to 
Device

Interior  
update

Device to 
Host

Interior kernel launch
blocked by serialized

cudaMemcpy API overhead

CUDA and MPI dependent  
interactions have to be  

synchronous on CPU

Kernel launch latency

Halo updates
(GPU under-occupied)

MPI MPI MPI MPI MPI MPI MPI MPI

MPI blocked by independent  
CUDA API calls

Q
U
D
A

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
▪ Fuse norm ghost with main ghost (half precision) (0.8)

▪ Halo region kernels don’t saturate the GPU
▪ Use a single kernel for all halo regions (4x threads) (0.7)

▪ MPI / CUDA can block each other from progressing
▪ Use pthreads to parallelize CUDA and MPI calls (0.8)

▪ MPI / CUDA have to interact synchronously via CPU
▪Watch this space…

Q
U
D
A

Wilson Dslash Strong Scaling
K40, half precision, 8-way communication, 12 reconstruct

G
FL

O
PS

0

150

300

450

600

8 12 16 20 24 28 32

model
0.6
0.7
0.8
single

Lattice Length

Performance limited by
occupancy not
communication

Q
U
D
A

GPU-Driven Communication (0.9+)
▪ For multi-GPU nodes remove MPI overhead
▪ Use the peer-2-peer CUDA API
▪ Completely asynchronous execution model

▪ Ultimate goal is single-kernel multi-GPU dslash
▪ Directly read / write from neighboring GPU
▪ Maximizes GPU occupancy and minimizes all sources of latency

▪ QUDA is one of the applications being investigated in the DOE’s
“DesignForward 2” Exascale programming investigation

▪ Asynchronous multi-node communication…

▪ Negligible gap between single and multi-GPU performance
▪ Performance limited by parallelism and not communication
▪ Expose more parallelism!

Q
U
D
A

Multigrid

Thousands of cores
for parallel processing

Few Cores optimized
for serial work

CPU

GPU

Q
U
D
A

Multigrid
▪ QUDA now supports both Wilson and Wilson-clover multigrid
▪ Other wilson-like actions trivial to add

▪ Lack of time has meant much left to be done
▪ CPU routines need to be optimized
▪ Define an interface and plug this into Chroma
▪ End of summer for initial production

▪ Staggered multigrid efforts ramping up (A. Strelchenko and R. Brower)

▪ Fairly easy: delete loops over spin loops
▪ Careful thought about Hermiticity requirements

Q
U
D
A

Multi-rhs solvers
• Instead of solving a single system Ax = b, solve many

• Extremely easy to implement
• Treat right-hand index i as 5th dimension
• Gauge field remains 4 dimensional

• Keep rhs index i local to each thread block
• Gauge field locality through texture cache

• Note this is very similar to domain wall

Axi = bi

Q
U
D
A

Improved Staggered Multi-rhs Dslash
Volume = 244, single precision, no reconstruction

G
FL

O
PS

0

225

450

675

900

Number of rhs

1 2 3 4 5 6 7 8 9 10

Fermi
Kepler
Maxwell

Q
U
D
A

Wilson Multi-rhs Dslash
Maxwell (M6000), Volume = 244, single precision, 12 reconstruction

G
FL

O
PS

0

350

700

1050

1400

Number of rhs

1 2 3 4 5 6 7 8 9 10

Single
Half

Q
U
D
A

Multi-rhs solvers
▪ Multi-rhs Wilson CG (double-half) on 4x M6000 GPUs
▪ 3 TFLOPS sustained

▪ Increasing #rhs improves strong scaling (latency reduction)

▪ Combine with deflation methods for bigger speedups
▪ Eigen-vector deflation 5-10x speedup for multi-rhs systems
▪ Utilize with multi-rhs solver 1.5-4x speedup
▪ Overall speedup of 8-40x versus serial solver
▪ Huge benefit for analysis workloads

▪ Expect similar benefits for multigrid
▪ Gain for multigrid may be even greater since increasing rhs

exposes more data parallelism in the coarse grids

Q
U
D
A

GPU Computing in 2016
NVLink Enables Data Transfer At

Speed of CPU Memory

TESLA
GPU

CPU

DDR Memory Stacked Memory

NVLink
80 GB/s

DDR4
50-75 GB/s

HBM
1 Terabyte/s

LQCD Performance with GPU generation
Single Precision Wilson-Dslash performance, V=244

0

450

900

1350

1800

G80 GT200 Fermi Kepler Pascal Volta
(estimated)

G
FL

O
P

S

(estimated)

Q
U
D
A

GPU Computing in 2016
▪ Massive disruption in LQCD performance

▪ High Bandwidth Memory (HBM)
▪ Memory bandwidth increases up to 1 TB/s
▪ Out-of-the-box >3x speedup in dslash performance
▪ Up to 32 GiB HBM per GPU

▪ NVLink-enabled servers
▪ No drawback from building dense GPU nodes
▪ PCIe bandwidth used exclusively for NIC
▪ A single node sustaining 10-20+ TFLOPS solver performance
▪ “Modest” clusters will achieve 1 PFLOPS of solver performance

Q
U
D
A

30

US to Build Two Flagship Supercomputers
Powered by the Tesla Platform

100-300 PFLOPS Peak

10x in Scientific App Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

40 TFLOPS per Node, >3,400 Nodes

2017

Major Step Forward on the Path to Exascale

Q
U
D
A

Summary
• QUDA is a production library for GPU-accelerated LQCD

– Coverage for most common LQCD algorithms

• Recent focus on improving strong scaling
– Improves the performance of all solvers
– More improvement to come

• Ongoing efforts in multigrid

• Multi-rhs solvers give significant speedup

• GPU Computing in 2016+ will be disruptive

Q
U
D
A

Mixed-precision solvers
▪ QUDA has had mixed-precision from the get go
▪ Almost a free lunch where it works well (wilson/clover)
– Residual injection / reliable updates mixed-precision BiCGstab
– 2 Tflops sustained in workstation (4 GPUs)
▪ Did not work well for CG (staggered / twisted mass / dwf)
– double-single has increased iteration count
– double-half non convergent
▪Why is this?
– CG recurrence relations much more intolerant
– BiCGstab noisy as hell anyway
▪ Need to make CG more robust
– Make double-half work
– Less polishing in mixed-precision multi-shift solver

Q
U
D
A

(Stable) Mixed-precision CG
▪ CG convergence relies on gradient vector being orthogonal to

residual
– Re-project when injecting new residual
▪ α chosen to minimize |e|A
– True irrespective of precision of p, q, r
– Solution correction is truncated if we keep low precision x
– Always keep solution vector in high precision
▪ β computation relies on (ri,rj) = |ri|2 δij
– Not true in finite precision
– Polak-Ribière formula is equivalent and self-stabilizing  

through local orthogonality

▪ Further improvement possible
– Mining the literature on fault-tolerant solvers…

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

βk = α(α(qk,qk) - (pk,qk))/(rk-1,rk-1)

Q
U
D
A

0 20000 40000 60000 80000 1e+05
1e-08

0.0001

1

10000 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.001

Q
U
D
A

Halo Region Updates (QUDA 0.7)
▪ Best way to reduce latency all round is kernel fusion
▪ Reduces API calls
▪ Reduces kernel launch overhead
▪ Increases GPU occupancy
▪ Previous multi-GPU dslash had 6 kernels
▪ pack (all faces), interior, halo_t, halo_z, halo_y, halo_x

▪ This puts a lower bound on the minimum time taken regardless
of the speed of the GPU execution

▪ Fused multi-GPU dslash now has 3 kernels halving lower bound
▪ pack (all faces), interior, halo (all faces)

▪ Scope for further fusing if we consider Deo Doe together
▪ pack -> interior -> halo -> pack -> interior -> halo

Q
U
D
A

Other improvements
▪ Double buffering of QMP/MPI receive buffers (QUDA 0.7)
▪ Early pre-posting of MPI Receive
▪ Dslash has been rewritten using pthreads to parallelize between

independent MPI and CUDA API calls (QUDA 0.8)
▪ Parallelize between CUDA -> MPI and MPI -> CUDA dependent operations.

E.g., waiting on MPI in t dimension while waiting on device -> host copy in
z dimension

▪ Improvement to half-precision latency (QUDA 0.8)
▪ Previously norm field was stored in separate halo region
▪ Now store in same array as main quark field
▪ Halves host -> device API calls
▪ Increases message size for improved throughput

