NVIDIA.

QUDA FEATURES, SCALING
AND SOLVERS

VIDIA

Introducing QUDA

e “QCD on CUDA” - http://lattice.github.com/quda (open source)

o Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

e Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

* Maximize performance

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— Eigenvector solvers (Lanczos, EigCG, GMRES-DR) (see talk by A. Strelchenko)
— Multigrid solvers for optimal convergence

e Aresearch tool for how to reach the exascale

http://lattice.github.com/quda

QUDA collaborators

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

= Rich Brower (Boston University)

= Nuno Cardoso (NCSA)

= Michael Cheng (Boston University)

= Justin Foley (Utah -> NIH)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= (Claudio Rebbi (Boston University)

= Guochun Shi (NCSA -> Google)

= Mario Schrock (INFN)

= Alexei Strelchenko (FNAL)

= Alejandro Vaquero (INFN)

" Mathias Wagner (Indiana University -> NVIDIA)
= Frank Winter (UoE -> Jlab)

QUDA Features

= Latest release 0.7.1 (10t June 2015)

» Dirac operators supported

= Wilson, Wilson-clover, staggered, improved staggered, twisted mass,
non-degenerate twisted mass, twisted-clover, domain wall (4-d / 5-d), Mobius

= Mixed-precision solvers
» CG, BiCGstab, GCR
= double, single, half precision
» 0.7 introduced a huge improvement in mixed-precision CG
» Link smearing and fermion force routines
» GPU-aware MPI and GPU Direct RDMA support
» Eigenvector solvers
= Improved strong scaling

QUDA 0.8 (end of summer)

» Gauge Fixing
= Overrelaxation and FFT methods
» Pure gauge evolution algorithms
» Heatbath and overrelaxation
= 4-d multi-GPU random generator
= Improved strong scaling
» Improved performance of many algorithms

QUDA 0.9

» Mixed-precision eigenvector deflation
- » Adaptive multigrid
\\ = Multi-rhs solvers

Improving Strong Scaling

» Communication-reducing solvers available but
= Not always applicable: staggered, multi-shift, etc.
» Regular multi-GPU dslash becomes performance limiter
» GPUs perhaps have a reputation of limited strong scaling

= Surprising observation (prior to QUDA 0.7)
» PCle generation 3: doubling in PCle bandwidth
» Negligible improvement in performance
» GPUDirect RDMA: reduces latency by a factor of three
= Negligible improvement in performance

» What is the performance limiter?

What is limiting strong scaling?

Screen shot from visual pI'Ofi ler (QUDA 0.6, K40, PCle gen2, wilson dslash, single precision, V=16%)

798.4 ms 798.5 ms 798.6 ms 798.7 ms 798. ANA:LTATH 798.9 ms 799 ms

—| Thread 2721061696

RuntimeAPI Hlll_l]ﬂl_lLH_lll_l“l_l“l_lll_]lUl_l .l_J il .I:ILI - il .|:|Ll - i I:IU i .I:Il—l.u Il_llllll_llll_lll_lh_lllll_l“l_l“l_l“l_l
Driver API

—| [0] GeForce GTX TITAN
- Context 1 (CUDA)
. MemCpy (HtoD)

" MemCpy (DtoH) 1 ¢ . ¥ *r

= Compute id..]
y 62.9% void qud...

" 12.7% void qud... J{«

y 7.9% void quda... -
\ 4.9% void quda...

y 4.3% void quda...

W 4.2% void quda...

W 1.7% void quda...

Z 1.2% void quda...

7 0.2% memset (0)

798.4 ms 798.5 ms 798. ANA:LTATH f98.9 ms 799 ms

—| Thread 2721061696

Runtime API JEE {5 T, 11 (NN | A
Driver API

—| [0] GeForce GTX TITAN
- Context 1 (CUDA)
. MemCpy (HtoD)
Y MemCpy (DtoH)
- Compute
y 62.9% void qud...
12.7% void qud...)
7.9% void quda...
4.9% void quda...
4.3% void quda...
4.2% void quda...
1.7% void quda...
1.2% void quda...
7 0.2% memset (0)

What is limiting strong scaling?

» GPU kernel / memcpy launch overhead (4-10 us)
» Reduce number of kernels / memcpy
» Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
» Fuse norm ghost with main ghost (half precision) (0.8)

» Halo region kernels don’t saturate the GPU
» Use a single kernel for all halo regions (4x threads) (0.7)

= MP| / CUDA can block each other from progressing
» Use pthreads to parallelize CUDA and MPI calls (0.8)

= MPl / CUDA have to interact synchronously via CPU
= Watch this space...

GFLOPS

Wilson Dslash Strong Scaling

K40, half precision, 8-way communication, 12 reconstruct

600

450

300

150

Performance limi

occupancy
communigfitio

AT

co

® model
@ 0.6

o 0.7
© 0.8
©- single

16 20 24 28 32

Lattice Length

GPU-Driven Communication (0.9+)

» For multi-GPU nodes remove MPI| overhead
» Use the peer-2-peer CUDA AP]
» Completely asynchronous execution model

» Ultimate goal is single-kernel multi-GPU dslash
» Directly read / write from neighboring GPU
» Maximizes GPU occupancy and minimizes all sources of latency

= QUDA is one of the applications being investigated in the DOE’s
“DesignForward 2” Exascale programming investigation

= Asynchronous multi-node communication...

_ = Negligible gap between single and multi-GPU performance
. » Performance limited by parallelism and not communication
» Expose more parallelism!

Multigrid

GPU

Thousands of cores
for parallel processing

CPU

Few Cores optimized
for serial work

Multigrid

= QUDA now supports both Wilson and Wilson-clover multigrid
» Other wilson-like actions trivial to add

» Lack of time has meant much left to be done
= CPU routines need to be optimized
» Define an interface and plug this into Chroma
» End of summer for initial production

» Staggered multigrid efforts ramping up (A. Strelchenko and R. Brower)
» Fairly easy: delete loops over spin loops
» Careful thought about Hermiticity requirements

Multi-rhs solvers
* [nstead of solving a single system Ax = b, solve many

AXi = Dj

» Extremely easy to implement
* Treat right-hand index i as 5t" dimension
» Gauge field remains 4 dimensional
» Keep rhs index i local to each thread block
» Gauge field locality through texture cache
* Note this is very similar to domain wall

GFLOPS

Improved Staggered Multi-rhs Dslash

Volume = 244, single precision, no reconstruction
900

" Fermi

. Kepler
I Maxwell

675

450

225

1 2 3 4 5 6 / 8

Number of rhs

10

GFLOPS

Wilson Multi-rhs Dslash

Maxwell (M6000), Volume = 244, single precision, 12 reconstruction

1400 ~ Single

W Half
1050
/700
350
0
1 2 3 4 5 6 /

Number of rhs

10

Multi-rhs solvers

= Multi-rhs Wilson CG (double-half) on 4x M6000 GPUs
= 3 TFLOPS sustained

» |[ncreasing #rhs improves strong scaling (latency reduction)

» Combine with deflation methods for bigger speedups
» Eigen-vector deflation 5-10x speedup for multi-rhs systems
» Utilize with multi-rhs solver 1.5-4x speedup
= Overall speedup of 8-40x versus serial solver
» Huge benefit for analysis workloads

» Expect similar benefits for multigrid

= Gain for multigrid may be even greater since increasing rhs
exposes more data parallelism in the coarse grids

GPU Computing in 2016

ﬁ

NVLink
380 GB/s

HBM DDR4
1 Terabyte/s 50-75 GB/

GFLOPS

LQCD Performance with GPU generation

Single Precision Wilson-Dslash performance, V=244

1800

1350

900

5510

G80 GT200 Fermi Kepler Pascal Volta

(estimated) (estimated)

GPU Computing in 2016

= Massive disruption in LQCD performance

» High Bandwidth Memory (HBM)
= Memory bandwidth increases up to 1 TB/s

» Qut-of-the-box >3x speedup in dslash performance
= Up to 32 GiB HBM per GPU

= NVLink-enabled servers
= No drawback from building dense GPU nodes
» PCle bandwidth used exclusively for NIC
» A single node sustaining 10-20+ TFLOPS solver performance
» “Modest” clusters will achieve 1 PFLOPS of solver performance

US to Build Two Flagship Supercomputers
Powered by the Tesla Platform

100-300 PFLOPS Peak
10x in Scientific App Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

'l Lawrence Livermore

< National Laboratory 40 TFLOPS per Node, >3,400 Nodes
2017

<A NVIDIA

Summary
* QUDA is a production library for GPU-accelerated LQCD

— Coverage for most common LQCD algorithms

* Recent focus on improving strong scaling
— Improves the performance of all solvers
— More improvement to come

* Ongoing efforts in multigrid

* Multi-rhs solvers give significant speedup

~ <+ GPU Computing in 2016+ will be disruptive

Mixed-precision solvers

» QUDA has had mixed-precision from the get go
» Almost a free lunch where it works well (wilson/clover)
- Residual injection / reliable updates mixed-precision BiCGstab
- 2 Tflops sustained in workstation (4 GPUs)
= Did not work well for CG (staggered / twisted mass / dwf)
- double-single has increased iteration count
- double-half non convergent
= Why is this?
- CG recurrence relations much more intolerant
- BiCGstab noisy as hell anyway
» Need to make CG more robust
- Make double-half work
- Less polishing in mixed-precision multi-shift solver

(Stable) Mixed-precision CG

= CG convergence relies on gradient vector being orthogonal to

residual
- Re-project when injecting new residual

= 0. chosen to minimize |e|a
- True irrespective of precision of p, q, r
- Solution correction is truncated if we keep low precision x

- Always keep solution vector in high precision ,
while (|ri|> ¢) {

« B computation relies on (ri,ij) = [rif? 3 R
- Not true in finite precision Pk-1 = Ik - PPk
- Polak-Ribiere formula is equivalent and self-stabilizing ki1 = A pre
through local orthogonality o = (rk,rk)/(Px+1, qk+1)

rk+1 = Ik - OlQk+1

Pk = a(o(qk,qx) - (Px,qk))/(Xk-1,1k-1) o X0t G
» Further improvement possible k=k+1
— Mining the literature on fault-tolerant solvers...

Comparison of staggered double-halt solvers

V=16"m=0.001
| | | | | | | |

10000 — —— double-half (naive)

—— double-half (new)
louble

4 4
3

NN

i
- =

1e—08§ | | | | | | | | | %

40000 60000 30000

Halo Region Updates (QUDA 0.7)

= Best way to reduce latency all round is kernel fusion
= Reduces API calls
» Reduces kernel launch overhead
» Increases GPU occupancy

» Previous multi-GPU dslash had 6 kernels
= pack (all faces), interior, halo_t, halo_z, halo_y, halo_x

= This puts a lower bound on the minimum time taken regardless
of the speed of the GPU execution

» Fused multi-GPU dslash now has 3 kernels halving lower bound
= pack (all faces), interior, halo (all faces)

= Scope for further fusing if we consider Deo Doe together
» pack -> interior ->| halo -> pack (> interior -> halo

Other improvements

» Double buffering of QMP/MPI receive buffers (QUDA 0.7)
= Early pre-posting of MPI| Receive

» Dslash has been rewritten using pthreads to parallelize between

independent MP| and CUDA API calls (QUDA 0.8)

= Parallelize between CUDA -> MPI and MPI -> CUDA dependent operations.
E.g., waiting on MPI in t dimension while waiting on device -> host copy in

Z dimension

» Improvement to half-precision latency (QUDA 0.8)
= Previously norm field was stored in separate halo region
= Now store in same array as main quark field

» Halves host -> device API calls
= [ncreases message size for improved throughput

