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Introducing QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source) 
• Effort started at Boston University in 2008, now in wide use as 

the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Provides: 

— Various solvers for all major fermonic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 

• Maximize performance 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector solvers (Lanczos, EigCG, GMRES-DR) (see talk by A. Strelchenko) 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale

http://lattice.github.com/quda
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QUDA collaborators
§ Ron Babich (NVIDIA) 
§ Kip Barros (LANL) 
§ Rich Brower (Boston University) 
§ Nuno Cardoso (NCSA) 
§ Michael Cheng (Boston University) 
§ Justin Foley (Utah -> NIH) 
§ Joel Giedt (Rensselaer Polytechnic Institute) 
§ Steve Gottlieb (Indiana University) 
§ Bálint Joó (Jlab) 
§ Hyung-Jin Kim (BNL) 
§ Claudio Rebbi (Boston University) 
§ Guochun Shi (NCSA -> Google) 
§ Mario Schröck (INFN) 
§ Alexei Strelchenko (FNAL) 
§ Alejandro Vaquero (INFN) 
§ Mathias Wagner (Indiana University -> NVIDIA) 
§ Frank Winter (UoE -> Jlab)
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QUDA Features
▪ Latest release 0.7.1 (10th June 2015) 
▪ Dirac operators supported 
▪ Wilson, Wilson-clover, staggered, improved staggered, twisted mass,  

non-degenerate twisted mass, twisted-clover, domain wall (4-d / 5-d), Mobius 
▪ Mixed-precision solvers 
▪ CG, BiCGstab, GCR 
▪ double, single, half precision 
▪ 0.7 introduced a huge improvement in mixed-precision CG  
▪ Link smearing and fermion force routines 
▪ GPU-aware MPI and GPU Direct RDMA support 
▪ Eigenvector solvers 
▪ Improved strong scaling
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QUDA 0.8 (end of summer)
▪ Gauge Fixing 
▪ Overrelaxation and FFT methods 
▪ Pure gauge evolution algorithms 
▪ Heatbath and overrelaxation 
▪ 4-d multi-GPU random generator 
▪ Improved strong scaling 
▪ Improved performance of many algorithms 

QUDA 0.9 
▪ Mixed-precision eigenvector deflation 
▪ Adaptive multigrid  
▪ Multi-rhs solvers
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Improving Strong Scaling
▪ Communication-reducing solvers available but 
▪ Not always applicable: staggered, multi-shift, etc. 
▪ Regular multi-GPU dslash becomes performance limiter 
▪ GPUs perhaps have a reputation of limited strong scaling 

▪ Surprising observation (prior to QUDA 0.7) 
▪ PCIe generation 3: doubling in PCIe bandwidth 
▪ Negligible improvement in performance 
▪ GPUDirect RDMA: reduces latency by a factor of three 
▪ Negligible improvement in performance 

▪What is the performance limiter?



What is limiting strong scaling?
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Screen shot from visual profiler (QUDA 0.6, K40, PCIe gen2, wilson dslash, single precision, V=164)
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What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us) 
▪ Reduce number of kernels / memcpy 
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7) 
▪ Fuse norm ghost with main ghost (half precision) (0.8) 

▪ Halo region kernels don’t saturate the GPU 
▪ Use a single kernel for all halo regions (4x threads) (0.7) 

▪ MPI / CUDA can block each other from progressing 
▪ Use pthreads to parallelize CUDA and MPI calls (0.8) 

▪ MPI / CUDA have to interact synchronously via CPU 
▪Watch this space…
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Wilson Dslash Strong Scaling
K40, half precision, 8-way communication, 12 reconstruct

G
FL

O
PS

0

150

300

450

600

8 12 16 20 24 28 32

model
0.6
0.7
0.8
single

Lattice Length

Performance limited by 
occupancy not 
communication



Q
U
D
A

GPU-Driven Communication (0.9+)
▪ For multi-GPU nodes remove MPI overhead 
▪ Use the peer-2-peer CUDA API 
▪ Completely asynchronous execution model 

▪ Ultimate goal is single-kernel multi-GPU dslash 
▪ Directly read / write from neighboring GPU 
▪ Maximizes GPU occupancy and minimizes all sources of latency 

▪ QUDA is one of the applications being investigated in the DOE’s 
“DesignForward 2” Exascale programming investigation 

▪ Asynchronous multi-node communication… 

▪ Negligible gap between single and multi-GPU performance 
▪ Performance limited by parallelism and not communication 
▪ Expose more parallelism!
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Multigrid

Thousands of cores  
for parallel processing

Few Cores optimized  
for serial work
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Multigrid
▪ QUDA now supports both Wilson and Wilson-clover multigrid 
▪ Other wilson-like actions trivial to add 

▪ Lack of time has meant much left to be done 
▪ CPU routines need to be optimized 
▪ Define an interface and plug this into Chroma  
▪ End of summer for initial production 

▪ Staggered multigrid efforts ramping up (A. Strelchenko and R. Brower) 

▪ Fairly easy: delete loops over spin loops 
▪ Careful thought about Hermiticity requirements
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Multi-rhs solvers
• Instead of solving a single system Ax = b, solve many 

• Extremely easy to implement 
• Treat right-hand index i as 5th dimension 
• Gauge field remains 4 dimensional 

• Keep rhs index i local to each thread block  
• Gauge field locality through texture cache 

• Note this is very similar to domain wall

Axi = bi
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Improved Staggered Multi-rhs Dslash
Volume = 244, single precision, no reconstruction
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Wilson Multi-rhs Dslash
Maxwell (M6000), Volume = 244, single precision, 12 reconstruction
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Multi-rhs solvers
▪ Multi-rhs Wilson CG (double-half) on 4x M6000 GPUs 
▪ 3 TFLOPS sustained 

▪ Increasing #rhs improves strong scaling (latency reduction) 

▪ Combine with deflation methods for bigger speedups 
▪ Eigen-vector deflation 5-10x speedup for multi-rhs systems 
▪ Utilize with multi-rhs solver 1.5-4x speedup 
▪ Overall speedup of 8-40x versus serial solver 
▪ Huge benefit for analysis workloads 

▪ Expect similar benefits for multigrid 
▪ Gain for multigrid may be even greater since increasing rhs 

exposes more data parallelism in the coarse grids 
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GPU Computing in 2016
NVLink Enables Data Transfer At 

Speed of CPU Memory 
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LQCD Performance with GPU generation 
Single Precision Wilson-Dslash performance, V=244  
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GPU Computing in 2016
▪ Massive disruption in LQCD performance  

▪ High Bandwidth Memory (HBM) 
▪ Memory bandwidth increases up to 1 TB/s 
▪ Out-of-the-box >3x speedup in dslash performance 
▪ Up to 32 GiB HBM per GPU 

▪ NVLink-enabled servers 
▪ No drawback from building dense GPU nodes 
▪ PCIe bandwidth used exclusively for NIC  
▪ A single node sustaining 10-20+ TFLOPS solver performance 
▪ “Modest” clusters will achieve 1 PFLOPS of solver performance
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30  

US to Build Two Flagship Supercomputers 
Powered by the Tesla Platform 

100-300 PFLOPS Peak 

10x in Scientific App Performance 

IBM POWER9 CPU + NVIDIA Volta GPU 

NVLink High Speed Interconnect 

40 TFLOPS per Node, >3,400 Nodes 

2017 

Major Step Forward on the Path to Exascale 
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Summary
• QUDA is a production library for GPU-accelerated LQCD 

– Coverage for most common LQCD algorithms  

• Recent focus on improving strong scaling 
– Improves the performance of all solvers 
– More improvement to come 

• Ongoing efforts in multigrid 

• Multi-rhs solvers give significant speedup  

• GPU Computing in 2016+ will be disruptive
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Mixed-precision solvers
▪ QUDA has had mixed-precision from the get go 
▪ Almost a free lunch where it works well (wilson/clover) 
– Residual injection / reliable updates mixed-precision BiCGstab 
– 2 Tflops sustained in workstation (4 GPUs) 
▪ Did not work well for CG (staggered / twisted mass / dwf) 
– double-single has increased iteration count 
– double-half non convergent 
▪Why is this? 
– CG recurrence relations much more intolerant 
– BiCGstab noisy as hell anyway 
▪ Need to make CG more robust 
– Make double-half work 
– Less polishing in mixed-precision multi-shift solver
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(Stable) Mixed-precision CG
▪ CG convergence relies on gradient vector being orthogonal to 

residual  
– Re-project when injecting new residual 
▪ α chosen to minimize |e|A 
– True irrespective of precision of p, q, r   
– Solution correction is truncated if we keep low precision x  
– Always keep solution vector in high precision 
▪ β computation relies on (ri,rj) = |ri|2 δij 
– Not true in finite precision 
– Polak-Ribière formula is equivalent and self-stabilizing  

through local orthogonality 

▪ Further improvement possible  
– Mining the literature on fault-tolerant solvers…

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
}

βk = α(α(qk,qk) - (pk,qk))/(rk-1,rk-1)
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Halo Region Updates (QUDA 0.7)
▪ Best way to reduce latency all round is kernel fusion 
▪ Reduces API calls 
▪ Reduces kernel launch overhead 
▪ Increases GPU occupancy 
▪ Previous multi-GPU dslash had 6 kernels 
▪ pack (all faces), interior, halo_t, halo_z, halo_y, halo_x 

▪ This puts a lower bound on the minimum time taken regardless 
of the speed of the GPU execution 

▪ Fused multi-GPU dslash now has 3 kernels halving lower bound 
▪ pack (all faces), interior, halo (all faces) 

▪ Scope for further fusing if we consider Deo Doe together 
▪ pack -> interior -> halo -> pack -> interior -> halo
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Other improvements
▪ Double buffering of QMP/MPI receive buffers (QUDA 0.7) 
▪ Early pre-posting of MPI Receive 
▪ Dslash has been rewritten using pthreads to parallelize between 

independent MPI and CUDA API calls (QUDA 0.8) 
▪ Parallelize between CUDA -> MPI and MPI -> CUDA dependent operations.  

E.g., waiting on MPI in t dimension while waiting on device -> host copy in 
z dimension 

▪ Improvement to half-precision latency (QUDA 0.8) 
▪ Previously norm field was stored in separate halo region 
▪ Now store in same array as main quark field 
▪ Halves host -> device API calls 
▪ Increases message size for improved throughput


