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Quantum Field Theory with Boundaries

It is of interest to study quantum field theories with boundaries:
Schrödinger functional;
Casimir effect.

Boundary conditions may be imposed by surface interactions in the action
(K. Symanzik, Nucl. Phys. B190, 1–44, 1981).

Our proof is independent of regulator: we shall use continuum notation for
simplicity, but results apply equally well on the lattice.

The proof is in Euclidean space: extension to Minkowski space as
distributions presumably follows by partial integration onto test functions
(Lowenstein and Speer, Commun. Math. Phys. 47, 43–51, 1976).

For a scalar field φ with the Lagrangian L = 1
2
(∂φ)2 + 1

2
m2φ2 + 1

4!
λφ4 we

add the surface term K = 1
2
cφ−δ

′(σ)φ+ with c = ±1.
The function σ vanishes on the wall.

For a planar wall that is orthogonal to a unit vector w and a distance `
from the origin we could take σ(x) = x·w − `.
In general we can take σ to be a smooth function corresponding to a wall
that is topologically equivalent to a plane.

φ± is the field on either side of the wall.
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Quadratic Interactions

The boundary conditions are imposed by a local interaction that is
quadratic in the field φ.

There is no small parameter associated with this wall interaction.

This is analogous to the mass term 1
2
m2φ2. We can

either treat this as part of the propagator, (k2 + m2)−1;
or treat it “perturbatively” as a two-point vertex −m2 with the massless
propagator ∆ = 1/k2.
In the latter case we can sum the two-point interactions to all orders in m

∆M = ∆ + ∆(−m2)∆ + ∆(−m2)∆(−m2)∆ + · · · = ∆
∞∑
n=0

[
(−m2)∆

]n
= ∆ + ∆(−m2)∆M =

∆

1 + m2∆
=

1

k2 + m2
.

This series only converges for k2 ≤ m2.
It has a unique analytic continuation ∀k2 6= m2, even though there is
no small parameter
The mass renormalization is m2 → m2 + δm2, where δm2 is treated
as a countervertex order by order in the loop expansion.
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Integral Equation

The Green’s function H(x , y) for the quadratic kernel without walls
L(x , y) = δ(x − y)(−∂2 + m2) satisfies

∫
dz L(x , z)H(z , y) = δ(x , y),

which we shall abbreviate as LH = 1.
Because there are no walls H is translationally invariant and is only a
function of x − y . We require that lim|x−y|→∞ H(x − y) = 0.

The Green’s function G(x , y) for the full quadratic kernel L + K where the
wall interaction is K(x , y) =

∫
dz δ(x − z−)δ(y − z+)δ′(σ(z)) satisfies

(L + K)G = 1, where z± = z ± ε∂σ with ε→ 0.

We may thus find G “non-perturbatively” by solving the integral equation
H(L + K)G = H ⇒ G = H − HKG .

G(x , y) is not translationally invariant, so it is not just a function of x − y .

We require G(x−, x+) = 0, so the two sides of the wall are decoupled. The
propagator’s derivatives must also vanish across the wall.

Since the propagator G vanishes across the wall so does any connected
Green’s function that couples points on opposite sides of the wall,
as it is a convolution of propagators.
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Solution of Integral Equation

This solution satisifies Dirichlet boundary conditions on one side and
Neumann boundary conditions on the other. Changing the sign of
the wall interaction interchanges these.
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Feynman Rules

As well as the usual bulk divergences we have new divergences associated
with wall vertices.

For simplicity we consider the wall σ(x) = x0 − `.
The wall vertex is K(x , y) =

∫
dz δ(x − z−)δ(y − z+)δ′(z0 − `).

In momentum space this is

K̃(q, q′) =

∫
dx dy

(2π)D
K(x , y)e−i(q·x+q′·y) =

∫
dz

(2π)D
e−i(q·z−+q′·z+)δ′(z0 − `)

=
i

2π
(q + q′)0e

−i`(q+q′)0e iε(q−q′)0δ((q + q′)⊥)

=
i

2π

∫
dp p0e

−i`p0δ(q + q′ − p)δ(p⊥)e iε
′ sgn(q−q′)0 .

The location of the wall is specified by the
phase e−i`p0 , and its orientation by the
dependence on the sign of (q − q′)0.

p

q q’

We have associated an “external” momentum p with the wall source
so that momentum is conserved at the wall vertex.
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Single Wall Vertex

Consider the one-loop diagram
contributing to the two-point
function that includes a single
wall vertex.

This is logarithmically divergent
in four dimensions, and therefore
its divergent part is independent
of q and is proportional to the
wall vertex K̃(p + q, q).

This divergence may be absorbed
into a renormalization of the
coefficient of the wall vertex,
c → c + δc.

p+q q

p

k+pk

We may impose the
renormalization condition that
the finite part of δc = 0 so as to
maintain the decoupling of the
two sides of the wall.
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Multiple Wall Vertices

Consider the one-loop diagram
contributing to the two-point
function that includes two wall
vertices.

This is logarithmically divergent
in six dimensions, and therefore
its divergent part is independent
of q, but it is not proportional to
a single wall vertex.

This divergence is not localized
on the wall, and cannot be
absorbed into a renormalization
of the coefficient of the wall
vertex.

p+q q–p'

p

k+p'k–p

p'
k

In general, if more than one wall
vertex appears in an overall
divergent graph then the
divergence is not localized on the
wall.

Do not be distracted by the fact
that φ4 theory without walls is
not renormalizable in six
dimensions.
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Power Counting

We can easily apply Dyson’s power-counting threorem to wall vertices.

In our example the wall interaction monomial in the action in
D-dimensions has dimension D − 2, just like a mass term.

Therefore for D = 4 the only overall divergent n-point functions with one
wall vertex must have n ≤ 2.

If there are two or more wall vertices then n ≤ 0.

n = 1 is forbidden by φ→ −φ symmetry, and n = 0 is uninteresting, so
the only new counterterm required is proportional to the wall vertex and is
therefore localized on the wall.

In φ3 theory we also need to consider
divergent tadpoles. These contribute to
a non-uniform background source J(x)
for the field φ, but not to any coupling
of the opposite sides of the wall.

p

k+pk

p

p

k+p'k–p

p'
k

p+p'
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Conclusions

Momentum is not conserved at a wall vertex: this is not suprising, as the
wall violates translational invariance. This corresponds to an “external”
momentum p flowing into the wall.

The wall interaction monomial in the action always has the same
power-counting dimension as the mass term.

Imposition of boundary conditions on the field by a local wall interaction
induces counterterms that remain localized on the wall to all orders in
perturbation theory provided that no more than one wall vertex can appear
in any overall divergent two-point function.
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