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Abstract
We investigate different methods for solving Lattice Perturbation Theory in φ4 theory in a finite peri-
odic box in four dimensions, defined by the action

S(ϕ) =

∫
d4x

{
1

2
∂µϕ(x)∂µϕ(x) +

1

2
m2ϕ(x)2 +

g

4!
ϕ(x)4

}
. (1)

We studied both Instantaneous Stochastic Perturbation Theory (ISPT) [1] and numerical perturba-
tion theory methods based on the Langevin (LSPT) [2] and Hybrid Molecular Dynamics equations
(HSPT).

ISPT
ISPT is based on the trivializing map that transforms Gaussian distributed random fields η into
stochastic fields φ such that

〈φ(x1)...φ(xn)〉η = 〈ϕ(x1)...ϕ(xn)〉,
where ϕ is the quantum field of the action (1). The stochastic field can be expressed to any finite order
in perturbation theory as series of rooted tree diagrams v(x,Ri)

φ(x) =
∑
n

φng
n
0 =

∑
i

civ(x,Ri).

These are the diagrams up to second order in the coupling.

We wrote a code for the automatic computation of these diagrams. Our routine starts
from the root vertex and explores all the vertices recursively to generate the field.

L = 4 z = 6 c1 c2

analytic mR −1.98 · 10−2 6.0 · 10−4
ISPT mR −2.00(6) · 10−2 5.9(2) · 10−4

analytic m0 −2.15 · 10−2 1.09 · 10−3
ISPT m0 −2.24(8) · 10−2 1.11(2) · 10−3

Table 1: ISPT results for g obtained with 107 configurations

As a test we computed the coupling de-
fined in [3]

g = −χ4
χ2
m4 = g0+c1g

2
0+c2g

3
0+O(g

4
0),

where χ2 and χ4 are the connected two-
and four-point functions at zero mo-
menta. We computed it in both bare and
renormalized theory and the results are
in agreement with the analytic value.
We considered it since three loop results are available. However in the computation of this cou-
pling there are big cancellation of the disconnected part that lead to large statistical errors, so we
considered other observables in the following.

LSPT
Another way to generate stochastic fields that represent the theory is via a Markov process generated
according to the Langevin equations

∂tsφ(x, ts) = ∂2φ(x, ts)− (m2 + δm2)φ(x, ts)−
g0
3!
φ(x, ts)

3 + η(x, ts),

where η is a Gaussian distributed field. The equation is discretized in the stochastic time ε = δt2 (δt is
the integration step in HSPT) and is integrated order by order in g0 using a second order Runge-Kutta
scheme, thus we expect O(ε2) errors in our observables. It is necessary to extrapolate to ε = 0.

HSPT
We also considered whether other stochastic differential equations based on HMD equations may
improve LSPT:

∂tsφ = π, ∂tsπ = ∂2φ(x, ts)− (m2 + δm2)φ(x, ts)−
g0
3!
φ(x, ts)

3.

The momentum fields π are also considered as a formal series in the coupling, and they are sampled
from a Gaussian distribution at the beginning of each trajectory. At the start of each trajectory the
momenta only have a non-zero lowest component, they will acquire higher-order components during
the MD evolution.
• In order to integrate these equations order by order in g0, we employ a 4th order symplectic inte-

grator. We thus expect errors O(δt4) in the integration step-size δt, which is the same as Langevin.
•We randomized the trajectory length τ in order to update all frequency components of the field φ

at the lowest order in perturbation theory, i.e. the free field φ0 [4].
•We considered adjusting the average trajectory length 〈τ〉 to be proportional to the correlation

length, hoping to obtain a dynamical critical exponent z = 1.

Gradient Flow observable
We considered the gradient flow equation [5] which in the case of φ4 theory can be taken to be:

∂tφ(x, t) = ∂2φ(x, t).

Using the Gradient Flow we can define convenient observables which possess a well defined contin-
uum limit.

t2〈E〉 = t2〈φ(t)4〉 = E0 + E1g0 + E2g
2
0 + E3g

3
0 +O(g40).

We studied the continuum limit of E keeping the box size L fixed, as we changed the resolution of
our lattice. We must scale all other dimensionful quantities, in particular the mass and the flow time;
we therefore introduced the dimensionless constants

z = mL, c =
√
8t/L.

To consider the renormalization of the mass, we expanded the field in both δm and g0, and we com-
puted the corresponding mass counterterms for the field stochastically,

φ =
∑
j,k

φ(j,k)δm
jgk0 .

We then imposed the following renormalization condition in order to find the expansion of δm in g0
so we could express φ in a single series in g0,

χ2
χ∗2

=

(
1 +

p̂2∗
m2

)
, p∗ = (2π/L, 0, 0, 0),

where p̂ is the lattice momentum p̂µ = 2 sin(pµ/2) and χ∗2 is the connected two point function evalu-
ated at p∗. We computed this observable in closed form using position space methods up to g0 order
for comparison with stochastic estimates.

Results
First we tested that all the stochastic methods are consistent with the correct value. Figure 1
shows the expectation value of E1 at L/a = 4. For LSPT we extrapolated to ε = 0, in this
case we did not need to do so for HSPT. We examined how the errors scale in the continuum
limit keeping the number of configuration generated in ISPT, LSPT and HSPT fixed (Fig: 2).
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Figure 1: Comparison of different methods in the de-
termination of E1

In LSPT and HSPT we saw the expected be-
haviour, consistent with the errors increas-
ing with the integrated autocorrelation (Fig-
ures 2.1–2.3). In the case of HSPT, which we
kept the average trajectory length 〈τ〉 = 1,
the cost does not only increase for bigger vol-
umes, but also because we reduced the step
size δt ∝ 1/L in order to keep the error in
the hamiltonian fixed.
In LSPT we observed that the statistical er-
rors grow like 1/

√
ε which is consistent with

the random walk behaviour with the step size
δt =

√
ε.

In the case of ISPT we noted a rapid increase
of the errors with L for order gn with n > 1.
In Figure 2.4 we present a plot with increased

statistic (107 configuration), and we see that the errors scale roughly like L0, L2, L3, L5 for order
g00, g

1
0, g

2
0, g

3
0, respectively.

Figure 2: Scaling behaviour of the relative error of E1 in 2.1, E2 in 2.2, E3 in 2.3. Figure: 2.4: ISPT only up to g30
Finally, we investigated how the integrated autocorrelation Ai scales with L/a in HSPT: we com-
pared the case 〈τ〉 = 1 with the case when 〈τ〉 = L/a (Figure 3). The results are consistent with
expectations. Ai at 〈τ〉 = 1 grows like a random walk behaviour (L/a)2, whereas for 〈τ〉 = L/a it is
constant, i.e. the configurations are effectively independent.

Figure 3: Scaling of Ai with 〈τ〉 = 1 and 〈τ〉 = L/a for E1 at orders g0 and g20

Conclusions
• The variance of ISPT grows catastrophically as we increase the order of g0. It does not appear

competitive in its present form.
• Relative merits of LSPT and HSPT, or more generally what the cheapest 〈τ〉 is in HSPT for fixed

errors is still to be determined.
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