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motivation

αs is a fundamental parameter of QCD.

Its numerical value is crucial input for most practical calculations in particle physics.

Interpretation of experimental data requires the value of αs to handle QCD backgrounds.

Several lattice QCD methods have been employed to determine αs, including

• the short-distance QCD potential
• Wilson loops
• the Schrödinger functional
• the ghost-gluon vertex
• current two-point functions with heavy valence quarks
• vacuum polarization at short distances

For a review and references, see FLAG Working Group, Eur. Phys. J. C74, 2890 (2014).
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vacuum polarization at short distances

This method uses vacuum polarization as a function of Euclidean Q2.
The perturbative expression is a function of αs.
At small Q2, there are also important non-perturbative (NP) contributions.
At large Q2, there are also important lattice artifacts.

This method was pioneered by Shintani et al, Phys Rev D79, 074510 (2009);
82, 074505 (2010);
89, 099903 (2014).

and PoS (LATTICE 2013) 487.
They worked at Q2 as low as ∼1 GeV2 and included NP contributions via OPE in the fit.
This is problematic if successive OPE terms have comparable sizes with alternating signs.
Perhaps surprisingly, this phenomenon really does occur:

Π
(1+0)
OPE (Q2) =

∞∑
k=0

C2k

Q2k

C4,V+A = +0.00268 GeV4

C6,V+A = −0.0125 GeV6

C8,V+A = +0.0349 GeV8

C10,V+A = −0.0832 GeV10

C12,V+A = +0.161 GeV12

C14,V+A = −0.191 GeV14

C16,V+A = −0.233 GeV16

Boito, Golterman, Maltman, Osborne, Peris, Phys Rev D91, 034003 (2015):

[For numerical values of C6,V and C8,V , see Table III.]

In the present project we work at larger Q2 where all NP OPE terms are negligible.
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method

The vector current two-point correlation function with I=1 and mu=md is

〈VµVν〉 ≡ Πµν(Q)

= (Q2δµν −QµQν)Π(Q2)

The QCD coupling will be obtained from Π(Q2).

There is a close relation to tau decay αs determination
(which uses experimental spectral data and finite-energy sum rule analysis of same Π(Q2))
but here we have certain systematic advantages.

The perturbative expression up to 6 loops (in MS at scale µ) is

Π(Q2) = C − 1

4π2

(
t +

5∑
k=1

(
αs(µ)

π

)k k−1∑
m=0

cAkm
tm+1

m + 1

)
where C is a constant and t = ln(Q2/µ2).

All coefficients are known except cA50 (which has been estimated).
Baikov, Chetyrkin, Kuhn, Phys Rev Lett 101, 012002 (2008)
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managing lattice artifacts

Discretization errors grow as Q2 increases, but they can be managed.
Choosing the momentum to be along a single lattice axis is particularly undesirable.

• We have generated Π(Q2) for all possible momenta Qµ.
With those data in hand, we define v̂ = (1, 1, 1, 1)/2 and calculate

(Q⊥)µ = Qµ − (Q · v̂)v̂µ

If Qµ points along the lattice diagonal then Q⊥ = 0.
For fixed |Q2|, those Qµ options closest to (Q⊥)µ have the smallest lattice artifacts.
Therefore we choose a maximum radius |Q⊥|.

• We handle O(4)-breaking lattice artifacts via reflection averaging:

Πlat(Q
2) =

1

12

∑
µ=x,y,z,t

∑
ν 6=µ

(
Πµν(Q)− Πµν(RµQ)

2QµQν

)
where Rµ is a reflection operator in the µ direction.
Note: Q = 0 is no problem because it will be outside the maximum radius.

• O(4)-preserving artifacts remain to be fitted:

Πlat(Q
2) = Π(Q2) + c1a

2Q2 + c2a
4Q4 + . . .
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lattice data

We use ensembles from RBC/UKQCD, Phys. Rev. D87, 094514 (2013)
lattice size β ms m` a−1 [GeV] ZV # configurations
243×64 2.13 0.04 0.005,0.01,0.02 1.78 0.714 900
323×64 2.25 0.03 0.004,0.006,0.008 2.38 0.745 940

We calculate 〈V L
µ V

C
ν 〉. The local current removes a contact term.

The conserved current preserves the Ward-Takahashi identity.∑
ν

Q̂νe
iQν/2Πµν = 0

Q̂ν = 2 sin(Qν/2)

Π(Q2) only depends on αs at subleading orders.
We use a renormalization-independent function where αs appears at leading order:

∆(Q2
1, Q

2
2) ≡ −4π2

(
Πlat(Q

2
1)− Πlat(Q

2
2)

ln(Q̂2
1/Q̂

2
2)

)
− 1

=
αs(µ)

π
+ higher orders
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removing O(4)-breaking lattice artifacts

The raw lattice data show a fishbone Reflection averaging produces a
pattern due to lattice artifacts. smooth curve.

Πraw(Q2) =
−1

3Q̂2

(
δµν −

4Q̂µQ̂ν

Q̂2

)
Πµν(Q

2) Πlat(Q
2) =

1

12

∑
µ=x,y,z,t

∑
ν 6=µ

(
Πµν(Q)− Πµν(RµQ)

2Q̂µQ̂ν

)
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stability of fitted αs

2-parameter fits to Πlat(Q
2) = Π(Q2) + c1a

2Q̂2 on fine lattice

varying the light quark mass varying the cylinder cut

m = 0.004 m = 0.006 m = 0.008 all data
0.07

0.08

0.09

0.1

0.11

α s(2
 G

eV
) 

 / 
π

0.5 0.6 0.7 0.8
(Q⊥ )

max
   [GeV]

0.07

0.08

0.09

0.1

0.11

α s(2
 G

eV
) 

 / 
π

(The thick red data point is our default value that reappears in several graphs.)
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varying the fit range

2-parameter fits to Πlat(Q
2) = Π(Q2) + c1a

2Q̂2 on fine lattice

Due to experience from τ decay phenomenology, we need Q2
min & 4 GeV2.

Here we explore beyond that range for interest.

Results should be insensitive to Q2
max if lattice artifacts are under control.
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(The thick red data point is our default value that reappears in several graphs.)
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varyingQ2
ref varying perturbative order

2-parameter fits to Πlat(Q
2) = Π(Q2) + c1a

2Q̂2 on fine lattice

(2,2,3,3) (2,3,2,3) (3,2,2,3) averaged

Q
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ref
 has components Q

i
=2sin(n

i
π/L

i
)
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− 1

The estimated coefficient cA50 appears at α
5
s.

Our result is insensitive to its precise value.

(The thick red data point is our default value that reappears in several graphs.)
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attempting the coarse lattice

Results displayed so far were for 323×64 with a−1 = 2.38 GeV.
We should perform a similar analysis for 243×64 with a−1 = 1.78 GeV but
• a two-parameter fit (αs and c1) does not describe the data well.
• a three-parameter fit (αs, c1 and c2) allows a huge error bar for αs.
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Conclusions: A two-parameter fit is not sufficient for the coarse lattice.
The statistical precision is not presently available to get αs from the 3-parameter fit.
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numerical result for αs

The analysis reported here gives

αs(2 GeV)

π
= 0.0889± 0.0035

and running to the τ mass (alternate analysis of same Π(Q2)) gives

α(3)
s (mτ) = 0.296± 0.013

which is in excellent agreement with results that use τ decay data from experiment.
In particular, the recent continuum finite-energy sum rule (FESR) analysis of the
2013/14 corrected and updated ALEPH hadronic tau decay data arrived at

α(3)
s (mτ) =

{
0.296±0.010 [fixed-order perturbation theory]
0.310±0.014 [contour-improved perturbation theory]

Boito, Golterman, Maltman, Osborne and Peris, Nucl. Part. Phys. Proc. 260, 134 (2015)

Running our result to mZ in the 5-flavor theory gives α(5)
s (mZ) = 0.1155± 0.0018.

For comparison, the FLAG Working Group result is α(5)
s (mZ) = 0.1184± 0.0012.

FLAG Working Group, Eur. Phys. J. C74, 2890 (2014).
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summary

We have presented a new implementation to obtain αs from vacuum polarization
at short distances.

It avoids reliance on the OPE and the dangers of an alternating-sign series.

Our method needs Π(Q2) for many off-axis lattice directions.

Our numerical results are competitive with the determination of αs from tau decay.

For the future: data from finer lattices would allow a study of the continuum limit.


