Accelerating deflation of eigenvalues for fermion matrix inversions on GPUs

Alexei Strelchenko

Scientific Computing Division @ Fermilab

The 33rd International Symposium on Lattice Field Theory Kobe, July 16

- Mixed precision deflation algorithms in QUDA
 - Symmetric/non-symmetric systems with many RHS
- Numerical experiments
- Current status and future work

Deflation algorithms in QUDA

- Lanczos (Hyung-Jin Kim)
- The Incremental eigCG
- GMRES-DR
- GMRES-Proj

Notes:

- Lanczos is callable from CPS, no internal test routines
- Lanczos and eigCG/GMRES-DR use different infrastructure for eigenvector computing (lots of overlaps)

Aspects of mixed precision deflation on accelerators

- Better FP performance
- Better GPU memory usage
- Less storage requirements
- Better network usage
- \bullet Accelerators are faster in low precision (e.g., for Kepler, DP/SP-ratio is 1 / 3)
- Some ideas:
 - A. Frommer *et al*, arXiv:1204.5463
 - A.S. and A. Stathopoulos, PoS Lattice 2014, 031
- Current status:
 - https://github.com/lattice/quda/tree/feature/deflation

The eigCG(k, m) algorithm

A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput. 32 (2010) 439-462

Input: $A \in \mathbb{C}^{n \times n}$, b, restart length m, Ritz dim. 2k% $V^{(m)} \in \mathbb{C}^{n \times m}$: orthonorm. basis of the search subspace; **repeat** % Run normal CG iterations for j = 0, 1, 2...; % Construct the Lanc. basis $V^{(m)}$ and the proj. matrix $T_m = V^{\dagger}AV$; % Restart periodically with 2k Ritz vecs computed from T_m and T_{m-1} ; % Update approx. solution x_j , and residual r_j for each iteration ; **until** *convergence*;

Incremental eigCG framework: summary

Incremental phase

- for the first s_1 RHS: call eigCG(k, m) solver
- ▶ add *k* eigenvectors to a separate subspace after each RHS.

Init-CG phase

- ▶ for all subsequent RHS (i.e., $s > s_1$): apply Galerkin oblique projection
- call standard CG

The mixed precision eigCG

Set the accumulation array U[], apply iterative refinements: 1 Run eigCG(k,m) until convergence in low precision 2 Accumulate k eigenvectors in U 3 Accumulate the solution 4 Recompute the residual in higher precision r = b - AxIf not accurate enough: 5 Project out U from the residual r

6 Go to step 1 and solve **deflated** error equation Ae = r in low prec.

The GMRES-DR(k,m) algorithm

R. Morgan, SIAM J.Sci.Comput. 24 (2002) 20-37

Input: $A \in \mathbb{C}^{n \times n}$, b, restart length m, harm. Ritz dim. k% First cycle: run GMRES (no deflation): compute V_{m+1} , \bar{H}_m ; % Compute aprox. solution x_m , and residual r_m ; **repeat** % Compute k lowest eigenpairs of $H_m + \beta^2 H^{-H} e_m e_m^H$, $\beta = h_{m+1,m}$; % Build augmenting subspace \mathcal{U} (spanned by harm. Ritz vectors); % Update $H_m \leftarrow H_k^{new}$ s.t. $AV_k^{new} = V_{k+1}^{new}\bar{H}_k^{new}$ holds; % Run Arnoldi process for i = k + 1, ..., m; % Compute aprox. solution x_m , and residual r_m for this cycle ; **until** *convergence*;

Systems with many RHS : GMRES-DR/GMRES-Proj algorithm

GMRES-DR phase

- ▶ solve the first RHS with GMRES-DR(k, m) solver
- store k eigenvectors and the projection matrix.

Projection phase

- ► for all subsequent RHS: apply Minres projection
- apply one cycle of GMRES(m)
- ▶ test residual norm for convergence. If not satisfied, repeat all steps

The mixed precision GMRES-DR(k,m)

(Following Frommer et al)

Apply iterative refinements:

Refinement cycles correspond one-to-one to the restart cycles of GMRES-DR

After each cycle :

recompute the residual in HP r = b - Ax and convert it back to LP If the iterative and the exact residual differ by more than a small amount: Do a "clean" restart (don't use any deflation subspace)

Lattice setup

- HISQ (2+1+1)-flavor ensemble: $32^3 \times 48$, $M_{\pi} = 131.0(MeV), m_l/m_s = 1/27$
- Twisted mass ensemble: $48^3 \times 96$, $M_{\pi} = 230.0 (MeV)$
- eigCG parameters: nev = 8, m = 144, $tol = 10^{-8}(HISQ), 10^{-10}(TMF), tol_{rest} = 10^{-5}(HISQ), 10^{-6}(TMF)$
- GMRES-DR parameters: nev = 144, m = 192, $tol = 10^{-10}$
- Used pi0g nodes @ FNAL, Tesla K40 accelerators

Incremental eigCG convergence ($32^3 \times 48$ HISQ)

Figure : Convergence of the eigCG for the first and the last RHS in the incremental stage.

Eigenvalue accuracy ($32^3 \times 48$ **HISQ)**

 $\ensuremath{\mathsf{Figure}}$: Eigenvalue residual norms of the even-odd HISQ operator, computed within the incr. stage

Mixed precision incremental eigCG performance, 1280 eigenvectors, $32^3\times48$ HISQ configuration (8 nodes, 32 K40m)

Solver type	Inc. NRHS / Time	CG Iters	CG Time
inc. eigCG (full)	160 (2315)	516(×15.5)	1.10 (×10.5)
inc. eigCG (mixed)	104 (1544)	946 (×8.4)	1.63 (x7.1)
undef. CG (mixed)	N.A.	8000 (×1.0)	11.6 (x1.0)

Mixed precision incremental eigCG performance, 800 eigenvectors, $32^3\times48$ HISQ configuration (6 nodes, 24 K40m)

Solver type	Inc. NRHS / Time	CG Iters	CG Time
inc. eigCG (full)	100 (1534)	790(×10.1)	1.48 (x7.8)
inc. eigCG (mixed)	46 (642)	1255 (×6.4)	2.13 (x5.4)
undef. CG (mixed)	N.A.	8000 (×1.0)	11.5 (x1.0)

$32^3 \times 48$ HISQ (single vs double prec. eigenvecs)

The incremental eigCG performance, $32^3\times 48$ HISQ configuration .

Eigv. prec	GPU nodes (NEV)	Deflated CG (Time)	GB per GPU
DP	6 (800)	1.48	6.5
SP	6 (800)	2.13	3.3
DP	4 (800)	1.54	9.4
SP	4 (800)	2.23	4.9
DP	2 (480)	3.22	9.8
SP	2 (800)	3.20	8.4

Incremental eigCG convergence ($48^3 \times 96$ TMF)

Figure : Convergence of the eigCG for the first and the last RHS in the incremental stage.

Eigenvalue accuracy ($48^3 \times 96$ **TMF)**

Figure : Eigenvalue residual norms for the operator $A = M^{\dagger}M$

Mixed precision incremental eigCG performance, 384 eigenvectors, $48^3 \times 96$ dynamical twisted mass configuration with $\kappa = 0.156361, \ \mu = 0.0015$

Solver type	Inc. NRHS	CG Iters	CG Time
inc. eigCG (full)	48	1001 (×10)	6.1 (x8.8)
inc. eigCG (mixed)	24	1370 (×7.3)	7.8 (x7.0)
undef. CG (mixed)	N.A.	10000 (×1.0)	54.0 (x1.0)

$48^3 \times 96$ TMF (single vs double prec. eigenvecs)

Mixed precision incremental eigCG performance, $48^3 \times 96$ dynamical twisted mass configuration with $\kappa = 0.156361$, $\mu = 0.0015$. Computed on 96 GPUs (24 nodes).

Eigv. prec	NEV	Deflated CG (Iters / Time)	GB per GPU
DP	384 (48 RHS)	1001 /6.1	10.0
SP	384 (24 RHS)	1370 /7.8	5.5
SP	640 (40 RHS)	856 /5.3	9.0
SP	768 (48 RHS)	753 /4.9	10.5

$48^3 \times 96$ lattice (eigenvec. accuracy, 96 GPUs)

Figure : Eigenvector residual norms, computed on 24 pi0g nodes.

Mixed precision incremental eigCG performance,

 $48^3 imes 96$ dynamical twisted mass configuration with $\kappa=0.156361,\ \mu=0.0015$

GPUs	NEV	Deflated CG (Iters / Time)	GB per GPU
96 (SP)	768 (48 RHS)	753 /4.9	10.5
64 (SP)	512 (32 RHS)	1045 /6.9	10.0
48 (SP)	384 (24 RHS)	1311 /8.0	10.5
96 (DP)	384 (48 RHS)	1001 /6.1	10.0

$48^3 \times 96$ TMF, GMRES-DR convergence (*preliminary*)

Mixed precision GMRES-DR(k = 144, m = 192) performance,

 $48^3 imes 96$ dynamical twisted mass configuration with $\kappa=0.161322,\ \mu=0.004$

- GMRES(m) stagnates at tolerance 10^{-3}
- full precision GMRES-DR(k, m) 12 nodes, exec. time 1690 secs (14063 iters)
- mixed precision GMRES-DR(k, m) 8 nodes, exec. time 1517 secs (17862 iters)
- mixed precision GMRES(m)-Proj(k) 8 nodes, exec. time 432 secs (22560 iters)

- Deflation:
 - multi-mass version of GMRES-DR
 - flexible version of GMRES-DR
 - SAP + FGMRESDR
 - more optimizations for systems with many RHS