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I. Motivation

Dirac Spectra in Two and Four Dimensions

Coleman-Mermin-Wagner Theorem
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Two and Four Dimensional Dirac Spectra for
βD = 1

x
Microscopic spectral density of

quenched staggered Dirac operator in

4 dimensions for QCD with two colors

and quarks in the adjoint representa-

tion.

Edwards-Heller-Narayanan-1999
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Two and Four Dimensional Dirac Spectra for
βD = 2

Microscopic spectral density of

quenched staggered Dirac operator

in 4 dimensions for QCD with three

colors. Wettig-etal-1999
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Two and Four Dimensional Dirac Spectra for
βD = 4

Microscopic spectral density of

quenched staggered Dirac opera-

tor in 4 dimensions for QCD with

two colors and fundamental quarks.

Wettig-JV-etal-1999

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

ρ

 

 

analytical

numerical Lx=Ly=6

numerical Lx=Ly=8

numerical Lx=6 Ly=8

SU(2) fundamental 

c)

Microscopic spectral density of the
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Puzzle

� There is no difference in the quality of agreement with chRMT
between two and four dimensional theories.

� Such agreement implies the validity of (partial quenched) chiral
perturbation theory and thus the spontaneous breaking of chiral
symmetry.

� Yet because of the Coleman-Mermin-Wagner continuous
symmetries cannot be broken spontaneously in two dimensions.
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Possible Solutions

The generating function for the resolvent is given by

G(z) =
d

dz

∣

∣

∣

∣

z′=z

〈

detNf (D + m)
det(D + z)

det(D + z′)

〉

.

� This partition function has both fermionic and bosonic
“ghost”-quarks.

� The flavor group is a supergroup and the boson-boson part has to
be to be noncompact. Otherwise the integrals in the partition
function diverge.

� A trivial or invariant ground state cannot exist for a noncompact
Goldstone manifold because the integration over the noncompact
group will be divergent.

Zirnbauer, Spencer-Zirnbauer-2004, Niedermaier-Seiler-2003
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Hyperbolic σ model
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Expectation value of T (q) = 〈tanh e(q) · n〉 with e(q) =
√

q2 − 1, e2, e3)

depends on the value of q for a SO(2,1) two-dimensional hyperbolic σ

-model (the spin components are normalized as n2
0 − n2

1 − n2
2 = 1 .

Duncan-Niedermaier-Seiler-2004

The claim is that the Coleman-Mermin-Wagner theorem is not valid for
noncompact symmetries or more generally for non-amenable
symmetries (these are symmetry groups for which a invariant mean
does not exist).
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Mermin-Wagner-Coleman Theorem

� If the claim by Niedermaier, Seiler, Spencer and Zirnbauer is
correct, it would imply that in two dimensions the compact part of
the symmetry group is not broken spontaneously while the
non-compact part is broken.

� In four dimensions both parts are broken spontaneously and one
would expect different universal eigenvalue correlations, or at least
a different scaling domain of the universal correlations, if this is not
the case. At this moment it is not yet clear what is going on.
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Condensed Matter Philosophy

In the condensed matter it is assumed that, whether or a continuous
symmetry is broken spontaneously, we can bosonize the partition
function in terms of the “Goldstone” degrees of freedom.

To find out if there is spontaneous symmetry breaking one has to study
the behavior of the order parameter under renormalization.

We will ask a simpler question and study the difference between the
bosonic and fermionic partition functions with the same parameters.
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Bosonic versus Fermionic Partition Functions

We will consider three examples:

� Phase quenched partition function at nonzero chemical potential in
the ǫ -domain.

� The ǫ –domain of one flavor QCD.

� One flavor chiral random matrix model at imaginary chemical
potential.

� The chiral condensate remains constant for quark masses beyond
this critical value.
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II. Phase Quenched QCD

Pion Condensation
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Chiral Condensate of Phase Quenched QCD

Phase quenched QCD is defined by the partition function

〈det(D + m + µγ0) det(D + m − µγ0)〉

and therefore µ can be interpreted as an isospin chemical potential.

At low temperatures, a phase transition to a phase of Bose-condensed
pions takes place at µ = mπ/2 .
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Fermionic Versus Bosonic Phase Quenched
QCD
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What is Going on with the Bosonic Partition
Function

� This behavior occurs because the contribution of a single
eigenvalue close to the mass diverges logarithmically in the
regularization parameter.

� The regularized bosonic partition function is defined by

〈

det−1





ǫ D + m − µγ0

D + m + µγ0 ǫ





〉

.

� This partition function has a charged Goldstone boson with mass
∼ √

ǫ which condenses already for an infinitesimal isospin
chemical potential.

� This is a generic result. For example one can easily check that the
same phenomenon occurs for compact the U(1) bosonic phase
quenched lattice QCD partition function in one dimension.
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III. Microscopic Limit of One Flavor QCD

What the mass dependence of the partition function of
QCD with one bosonic flavor?
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One Flavor QCD

ZNf=1(m) = 〈det(D + m)〉.

� Axial symmetry is broken explicitly by the anomaly

� For mΛQCD ≪ 1/
√

V the partition function is given by

ZNf=1(m, θ) = emV Σ cos θ =
∑

ν

eiνθIν(mV Σ).

Leutwyler-Smilga-1996

� The chiral condensate is constant as a function of the mass.

� The sum over topology ν always converges because for large ν

we have Iν(x) ∼ xν/ν! .
Damgaard-2001,Lehner-Ohtani-JV-Wettig-2006
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Bosonic One Flavor Partition Function

Z =

〈

1

det(D + m)

〉

=

〈∫

dφe−φ∗(D+m)φ.

〉

φ∗(D + m)φ =





φ∗
1

φ∗
2









m id

−id† m









φ1

φ2



 .

To maintain complex conjugation required for convergence the axial
symmetry is given by





φ1

φ2



 →





esφ1

e−sφ2





So instead of the axial U(1) symmetry for the fermionic partition
function we have the noncompact Gl(1)/U(1) symmetry.
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Bosonic Partition Function in the Microscopic
Domain

The fermionic one-flavor partition function for m ≪ 1/
√

V is given by

Z
Nf=1
ν (m) =

∫

U∈U(1)

dUdetνUe
1

2
mV σTr(U+U−1)

=

∫

dθeiνθemV Σ cos θ

= Iν(mV Σ).

The bosonic partition function is obtained by replacing the U(1) integral
by a Gl(1)/U(1) integral and is thus given by

Z
Nf =−1
ν =

∫

U∈Gl(1)/U(1)

dUdetνUemV ΣTr(U+U−1)

=

∫

dseνsemV Σ cosh s

= Kν(mV Σ).
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Bosonic One-Flavor Partition Function at θ = 0

ZNf=−1(m) =
∑

ν

P (ν)Kν(mV Σ)

� For large ν at fixed x we have that Kν(x) ∼ ν!/xν .

� The sum is still convergent because of the distribution of the
topological charge set by the gauge field, P (ν) ∼ exp(−ν2/2χV ) .

� For large mV Σ we can use Kν(x) ∼ e−x/
√

|x| and

ZNf=−1(m) ∼
√

χV
e−mV Σ

√

|m|V Σ

Note that the
√

m factor is not canceled as is the case for the
fermionic partition function where χ = mΣ .
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IV. Random Matrix Model at Imaginary
Chemical Potential

Random Matrix Model

Chiral Condensate

Distribution over topological sectors
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Chiral Random Matrix Model at Imaginary
Chemical Potential

Dirac Operator

D =





m id + t

id† + t m





and d is a n × (n + ν) matrix from a Gaussian distribution.

Generically, D has ν zero modes. In the thermodynamic limit we keep
N ≡ 2n + ν fixed.

Jackson-JV-2001, Lehner-Ohtani-JV-Wettig-2006

The chiral condensate is normalized to one and the critical imaginary
chemical potential for chiral symmetry restoration is also at t = 1 .
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Solution of the Random Matrix Model

Bosonic partition function

Z
Nf =−1
ν (z, t) = z−ν

∫ ∞

0

ds

sν+1
e−sNz2/2 1

(1/s + 1/Σ2)(N+ν)/2
e−

1

2
Nt2/(1/s+1/Σ2

Kellerstein-JV-2015

Fermionic partition function

Z
Nf =1
ν (z, t) =

∫ ∞

0

dssν+1Iν(zNsΣ)(s2 + t2)(N−ν)/2e−Ns2−nz2/2.

Halasz-Jackson-JV-2004, Lehner-Ohtani-JV-Wettig-2006
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Microscopic Limit

In the microscopic limit mN fixed for N → ∞ the integrals can be
evaluated analytically

Z
Nf =−1
ν ∼ (1 − t2Σ2)ν/2Kν(NmΣ

√

1 − t2Σ2).

Z
Nf =1
ν ∼ 1

(1 − t2Σ2)ν/2
Iν(NmΣ

√

1 − t2Σ2).

Lehner-Ohtani-JV-Wettig-2006

For QCD one would expect that in this limit the dependence partition
function on the imaginary chemical potential is only through a modified
chiral condensate. This is only the case if we introduce an additional
normalization factor

NNf =1 =
1

(1 − Σ2t2)ν/2
, NNf =−1 = (1 − Σ2t2)ν/2.
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Normalization Factor

The partition function at θ = 0 thus requires a nontrivial normalization
factor

Z(m, θ = 0) =
∑

ν

NνZν .

In QCD Nν is a normal is taken to be equal unity.

In lattice QCD one would also expect a ν -dependent normalization
factor.

Lehner-Ohtani-JV-Wettig-2006
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Comparison of Fermionic and Bosonic Partition
Functions
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For ν = 0 the probability to find a single eigenvalue at λ = 0 diverges
in the chiral limit for the bosonic partition function while it vanishes for
the fermionic partition function.

For ν 6= 0 both the fermionic and the bosonic partition function are
dominated by the zero modes in the chiral limit.

The parameters of the chiral random matrix model are equal to
N = 214 and Σ = 1 .
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Chiral Condensate of Large Topological Charge
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For large topological charge, the bosonic and fermionic partition
function are almost identical for m ≪ 1/

√
N , and in this domain, the

mass dependence of the chiral condensate becomes temperature
independent.
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Chiral Condensate for Real Chemical Potential
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The expressions for both the fermionic and bosonic partition function
can be continued to real chemical potential by the substitution
t2 → −t2 in our expresssions. For the fermion partition function this
can be justified à priori, but the derivation of the bosonic partition
function is not valid for imaginary t . We are currently working out the
meaning of this analytical continuation in terms of the original random
matrix model.
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Comparison of Real and Imaginary Chemical
Potential
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Comparison of the chiral condensate for real (left) and imaginary
(right) chemical potential. The bosonic result does not have a phase
transition to the chirally restored phase.
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Bosonic Partition Function is Dominated by
topology
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When m is kept fixed in the thermodynamic limit, the axial symmetry is
restored for large imaginary chemical potential, and for large topology,
the fermionic and bosonic partition function show an identical mass
dependence.
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Distribution of the Topological Charge
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Bosonic Partition Function

Because of the mν factor in the fermion determinant topology is
suppressed for the fermionic partition function while it is enhanced for
the bosonic partition function.
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Bosonic Partition Function is Dominated by
topology

More quantitatively

Z
Nf=−1
ν ∼ eα|ν|−ν2/2χV

The average topological charge is given by

〈|ν|〉 =

∑

ν |ν|Z
Nf=−1
ν

∑

ν Z
Nf=−1
ν

= αχV.

The contribution from the zero modes to the chiral condensate cannot
be neglected in the thermodynamic limit

1

V

〈|ν|〉
m

=
αχ

m
.

Wilson Dirac Spectra – p. 34/35



IV. Conclusions

� Noncompact symmetries may be broken spontaneously for
parameter values for which the corresponding compact symmetry
is restored.
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IV. Conclusions

� Noncompact symmetries may be broken spontaneously for
parameter values for which the corresponding compact symmetry
is restored.

� At imaginary chemical potential, chiral symmetry is broken in the
same way for fermionic and bosonic partition functions, but this not
the case for real chemical potential.

� The bosonic one flavor partition function is dominated by
configurations with topological charge that scales linearly in the
volume.

� Nontrivial normalization factors may appear in the sum over
topological sectors.

� The excellent agreement of two dimensional QCD Dirac spectra
with random matrix theory remains a puzzle.
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