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Two projects with the goal of exploring conformal or near
conformal dynamics:

SU(3) with 4 light flavors and 8 flavors of variable mass

Richard Brower, Anna Hasenfratz, C.R., Evan Weinberg, Oliver Witzel

SU(3) with 8 flavors

the LSD collaboration and Anna Hasenfratz

Common aspects:

- fundamental adjoint gauge action with βa = −β/4

- nHYP smeared staggered Fermions

- most calculations performed with FUEL



The SU(3) theory with 4 light flavors and 8 flavors of
variable mass interpolates between the QCD-like 4-fermion
theory and the almost certainly conformal SU(3) with 12 fermions in
the fundamental representation:
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The SU(3) theory with 8 flavors in the fundamental
representation may be a mass-broken conformal theory or a near
conformal theory.



Simulation parameters
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4+8: β = 4.0

sizes: 243x48

up to 483x96

Colors show

est. finite size

effects.

8: β = 4.8

sizes up to

643x128



The running coupling constant, 4+8:
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From the gradient flow: g2GF (µ = 1/
√
8t) = t2〈E(t)〉/N , t flow time,

E energy density;

g2GF is also used to set the scale: g2GF (t = t0) = 0.3/N



The running coupling constant, 8 flavors:
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The isosinglet scalar state.

A viable theory for dynamical electroweak symmetry breaking

should give origin to a 0++ state of mass much lower than the other

excitations in the spectrum, that could be identified with the Higgs.

Calculating the mass of the isosinglet scalar is however difficult

because, contrary to the states which do not couple to the vacuum,

it requires an accurate evaluation of disconnected diagrams.



Chasing the elusive 0++

0++ correlator:

S(t) = (1/Ns)
∑
x,y

〈(ψ̄ψ)(x, 0)(ψ̄ψ)(y, t)〉−v.s. = [2]D(t)−C(t)

with

D(t) = (1/Ns)〈
∑
x

〈(ψ̄ψ)(x, 0)〉U
∑
y

〈(ψ̄ψ)(y, t)〉U〉 − v.s.

C(t) = (1/Ns)〈
∑
x,y

〈ψ(x, 0)ψ̄(y, t)〉U〈ψ(y, t)ψ̄(x, 0)〉U〉

The evaluation of D(t) is problematic: requires very good statistics

and inspection of the data.
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An interactive

fitting pro-

gram allows

the user to

enter data, set

initial param-

eters, choose

a fit type, and

perform a fit.
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4 plus 8 simula-

tion:

β = 4.0,

m` = 0.01

mh = 0.08,

243 × 48,

0++ correlator

(D − C),

averaged over

2000 configura-

tions.



A remark on the representation of the data:

rather than a logarithmic representation:

y = log[f(x)]

I use

y = arcsinh[αf(x)]

α being a suitable scaling constant.

arcsinh(x) = log(x+
√

1 + x2)

is an odd function which behaves like± log(±x) for large positive

or negative x and interpolates linearly between the two domains.

The use of this representation is very useful for negative data or

data (errors) approaching zero.
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Choosing an

initial set of

parameters for

a two mass fit..
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With

gap=0.5E-3

the fit over

t=10-38 gives

m0=0.249,

c0=0.412E-3,

m1=0.450,

c1=0.014E-3.



. The depen-

dence on the

gap can be

eliminated by

fitting the time

differences, or

allowing an ex-

tra parameter

for the vacuum

subtraction.

Here we get:

m0=0.211,

c0’=0.144E-3,

m1=0.485,

c1’=0.005E-3.
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The discon-

nected cor-

relator D(t)

must be used

with caution

because of

the unphysical

behavior for

smaller t. The

fit here gives

m0=0.251,

c0=0.386E-3,

m1=0.475,

c1=-0.001E-3.

Notice the neg-

ative curvature

for small t.
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Pushing the fit

further we get

m0=0.242,

c0=0.041E-3,

m1=0.475,

c1=0.004E-3.
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The average

over the first

1000 configu-

rations shows

a very poor

behavior in the

center of the

lattice.
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The average

over the first

1000 configu-

rations shows

a very poor

behavior in the

center of the

lattice. The

line shows the

fit obtained

with 2000

configurations.
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Taking averages over 20 groups of 100 consecutive configurations shows the

huge fluctuations of the correlator, here mostly due to the fluctuation of the

vacuum values.
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But even removing the vacuum fluctuation, by fixing the central value of the

correlator, still shows very large fluctuations.



The correlators in momentum space
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We may obtain

complementary

information

on the spec-

trum from the

correlators in

momentum

space:

F (p) =
∑
t

S(t)eıpt

(363 × 64, β = 4,m` = 0.003,mh = 0.08, 1014 measurements)



The correlators in momentum space, cont’d

F (p) =
∑
t

S(t)eıpt

In the continuum limit and infinite volume F (p) has a pole at

p = ım, m being the lowest state’s mass.

Fit F (p) to

1 + a0 cos p+ a1 cos2 p+ a2 cos3 p+ a3 cos4 p

b0 + b1 cos p+ b2 cos2 p+ b3 cos3 p+ b4 cos4 p+ b5 cos5 p

and continue to complex p.
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0+ isosinglet correlator in complex momentum space. Color represents the

complex phase. The pole closest to the real axis is at p = 0.194 ı.
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0+ isomultiplet correlator in complex momentum space. The pole closest to the

real axis is at p = 0.263 ı.
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Pseudoscalar correlator in complex momentum space. The pole closest to the

real axis is at p = 0.120 ı.
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How about the 0+ isomultiplet parity partner? The phase of the denominator

shows zeros for Real(p) = ±π.



.

Teeny tiny poles: the numerator also has a zero nearby, so the stength of the

poles is weak.


