
Pion electromagnetic form 
factor from full Lattice QCD

Jonna Koponen
University of Glasgow

HPQCD collaboration*

*F. Bursa, C. T. H. Davies, G. Donald, 
R. Dowdall and J. K.

Lattice 2015, Kobe, Japan



Motivation
• The electromagnetic form factor of the charged π 

meson parameterises the deviations from the 
behaviour of a point-like particle when struck by a 
photon

• These deviations arise from the internal structure of 
the π: constituent quarks and their strong interaction

• Can be calculated in QCD, but need fully 
nonperturbative treatment → use Lattice QCD

• Experimental determination from π – e scattering

• Important to work at physical pion mass



Dependence on pion mass

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

ETMC (N
f
 = 2 TM)

QCDSF/UKQCD (N
f
 = 2 Clover)

UKQCD/RBC (N
f
 = 2+1 DWF)

LHP (N
f
 = 2+1 DWF)

JLQCD (N
f
 = 2 overlap)

experiment

<
r2

>
  
 (

fm
2
)

M
�

2
   (GeV

2
)

ETMC, Phys. Rev. D79 (2009) 074506



Lattice configurations
• MILC nf=2+1+1 HISQ lattice configurations

• HISQ action for valence quarks

• quark masses tuned to physical masses

• large volumes: (5.8 fm)3 for the coarse (a=0.12 
fm) and fine (a=0.088 fm) lattices (Lmπ ≈ 4)

Set a/fm aml ams amc m�/MeV L/a⇥ Lt N
conf

1 0.15 0.00235 0.0647 0.831 133 32⇥ 48 1000
2 0.12 0.00184 0.0507 0.628 133 48⇥ 64 1000
3 0.088 0.00120 0.0363 0.432 128 64⇥ 96 223



• Consider two currents, a 1-link spatial vector 
current and a scalar current

Form factors = 3pt amplitudes
2

TABLE I. The MILC gluon field ensembles (sets) used
here [18, 19]. The lattice spacing, a, is determined using
the w0 parameter [21], and has a correlated 0.5% uncertainty
from the physical value of w0, fixed using f� [3]. Set 1 will
be referred to “very coarse”, 2 as “coarse” and 3 as “fine”.
Columns 3, 4 and 5 give the sea quark masses in lattice units
(mu = md = m⇥). Ls and Lt are the lengths in lattice units
in space and time directions for each lattice. The number
of configurations that we have used in each set is given in
the seventh column. The final column gives the values of the
end-point of the 3-point function, T , in lattice units.

Set a/fm am⇥,sea ams,sea amc,sea Ls � Lt ncfg T
1 0.1509 0.00235 0.0647 0.831 32�48 1000 9,12,15
2 0.1212 0.00184 0.0507 0.628 48�64 1000 12,15,18
3 0.0879 0.0012 0.0363 0.432 64�96 223 16,21,26

nected pieces from heavier-than-realistic u/d quarks both
to the scalar form factor and to the radius derived from
it. Instead our results are more in line with expectations
from chiral perturbation theory and we are able to distin-
guish disconnected contributions coming from u/d and s
quark loops.

The implications of our results and prospects for calcu-
lating the form factor at larger values of |q2| are discussed
in the Conclusions.

II. LATTICE CALCULATION

For the lattice QCD calculation we use the Highly Im-
proved Staggered Quark (HISQ) action [16], which has
been demonstrated to have very small discretisation er-
rors [3, 17]. We use gluon field configurations generated
by the MILC collaboration [18, 19] that include u, d, s
and c sea quarks using the HISQ action along with a fully
O(�sa2) improved gluon action [20]. The ensembles that
we use here have light quark masses mu = md = m⇥

with ml and hence m� close to its physical value. The
parameters of the ensembles are given in Table I.

On these configurations we generate HISQ light quark
propagators with the same mass as that of the sea light
quarks. We use a local random wall source [3] and 4 time
sources per configuration for high statistics. The propa-
gators are combined into ⇤ meson correlation functions
(2-point correlators) that create a ⇤ meson at time 0 and
destroy it at time t� and correlation functions that allow
for interaction with a current J at an intermediate time,
t, between a ⇤ meson source at 0 and sink at T (3-point
correlators). These are illustrated in Fig. 1. Results at
all t�(t) values are obtained for 2(3)-point functions and
we also use three values for T in the 3-point functions, so
that our fits can map out fully the t and T dependence
for improved accuracy. When J is a vector current we
need to consider only one 3-point diagram for the flavour
non-singlet ⇤. This is shown as the central diagram of
Fig. 1 in which the current J is inserted into one of the
legs of the 2-point function. We simply multiply by 2
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FIG. 1. 2-point (top) and 3-point quark-line-connected (mid-
dle) and quark-line disconnected (bottom) correlators.

to allow for its insertion into the other leg. The ‘dis-
connected diagram’ which is the product of a ⇤ 2-point
function and a closed quark loop coupled to J is shown
as the lower diagram of Fig. 1. This vanishes for vec-
tor J in the ensemble average because it is odd under
charge-conjugation [22]. For scalar J this diagram needs
to be included and di�erent combinations of flavours of
quarks in the closed quark loop give rise to di�erent form
factors.

The ⇤ mesons in our correlators are the Goldstone
mesons whose mass vanishes with m⇥. We ensure this by
using the local ⇥5 operator at source and sink. In stag-
gered quark parlance this is the ⇥5�⇥5 operator. For J we
use a symmetric 1-link point-split spatial vector current,
Vi, or a local scalar current, S. A gluon field is included
in the vector current to make it gauge-covariant. Both
of these are ‘tasteless’ staggered quark operators (⇥i � 1
and 1� 1) and so can be used in a 3-point function with
the Goldstone meson at source and sink.

We work with several ⇤ meson spatial momenta by gen-
erating light quark propagators with a phase included on
the spatial gluon links. This is equivalent to introduc-
ing a phase into the boundary condition on the field [23],
which gives a momentum to the quark. As illustrated
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the spatial gluon links. This is equivalent to introduc-
ing a phase into the boundary condition on the field [23],
which gives a momentum to the quark. As illustrated

• Use a phase at the boundary 
to give a quark a momentum:

• Tune θ to get the desired q2 
and extract f+(q2) in the 
space-like (negative) region 
of q2 near zero

�(x+ êjL) = ei2⇥�j�(x)

! pj = 2⇥�j/L

q2 = (E2 � E1)
2 � (�p2 � �p1)

2



Connected and disconnected diagrams

• Vector current: Disconnected 
diagrams cancel due to charge 
conjugation and isospin 
symmetries

• Scalar current: For a full 
calculation need both connected 
and disconnected diagrams, 
where the disconnected piece
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Disconnected diagrams
• q^2=0: disconnected piece is determined from 

the correlation of a π meson 2-point function 
(source at t’=0, sink at t’=T) with a scalar 
current (condensate) summed over timeslice 
at t’=t 

• calculate the      condensate by summing over 
a pseudoscalar meson 2-point function with 
valence quarks q:

• non-zero q^2: project onto non-zero lattice 
spatial momenta 2π(nx,ny,nz)/L

q̄q

TrM�1
00 = amq

X

n

Tr
��M�1

0n

��2



Fitting the correlators

• Use Bayesian priors to constrain fit parameters

• Fit all q2 values simultaneously to take into account 
the correlations
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Disconnected 
pieces

• Include light and strange 
quarks in the loop

• two flavour 
combinations:

S
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Scalar and vector form factors
• Relate matrix elements and 3-point amplitudes:

• Calculate form factors from the matrix elements. 
Need renormalisation constant Z for the vector 
current: demand that f+(0)=1

• From Feynman-Hellmann theorem:

• Scalar current is absolutely normalised, but we need 
to calculate the coefficient A - treat the scalar 
current as requiring a Z factor and set f0(0)=1

h⇡(~p1)|J |⇡(~p2)i = Z
p

4E0(~p1)E0(~p2)J0,0(~p1, ~p2)

h⇡(~p1)|Vi|⇡(~p2)i = f+(q
2)(~p1 + ~p2)i

h⇡(~p
1

)|S|⇡(~p
2

)i = Af
0

(q2), A
conn

=
@M2

⇡
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Results: vector form factor
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Continuum extrapolation
• Fit the form factors to the pole form

• The slope at q2=0 gives the mean square of the 
charge radius:

• In the case of scalar current the log is multiplied by 6

f(q2) =
1

1 + ca2(�a)2 + ca4(�a)4 � hr2iV q2/6

hr2iV = hr2iV,0

1 + ba2(�a)2 + ba4(�a)4 +

bsea�msea

10ms,phys

�

� 1

�2
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ln


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m2
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�
, where � = 500 MeV & �⇥ = 1.16 GeV
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dq2

�����
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Connected diagram only

Results: scalar form factor
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Vector mean square radius
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• HPQCD: 
3 lattice spacings, 
physical pion mass

• other lattice 
calculations: 
smallest pion 
masses 240-400 
MeV, some use 
only one lattice 
spacing

PDG average



Scalar mean square radius
• HPQCD: 

• other lattice 
calculations: two 
flavours, including 
disconnected 
pieces
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Errors: Finite volume and taste

• We do the calculation in a finite box, size (4.8)3 
- 5.8)3 fm3

• Finite volume effects are small for masses and 
form factors, but can be large for 

• the use of staggered quarks means we have 
different taste pions (with different masses) in 
the chiral loops

hr2i
5

TABLE III. Error budget for the mean square radii of the �,
as a percentage of the final answer. See the discussion in the
text for a description of each component.

�r2⇥V �r2⇥connS �r2⇥singletS

statistics/fitting 4.5 5 15
isospin/electromagnetism 0.5 3 3
finite volume 1.5 10 8
total 4.8 12 17

ble.
We apply the functional form of eq. (6) and (7) to our

result taking account of the correlations between results
at di�erent values of q2 obtained on a given ensemble.
The fit has ⇥2/dof = 0.9 and gives the physical result for
the electric charge radius of the � of �r2⇥V,0 = 10.35(46)
GeV�2, or 0.403(18) fm2.

We can also use the final logarithmic term in eq. (7)
to estimate the impact of isospin and electromagnetic ef-
fects by varying the value of m�,phys used there. The
physical value of m� corresponding to our lattice world
in which u and d quark masses are equal and there is
no electromagnetism is m�0 = 0.135 GeV [29], and we
use this for our central value above. The experimental
results correspond to m�+ = 0.139 GeV and we substi-
tute that for the physical value in the logarithm to assess
the uncertainty from the fact that the real world has
di�erent u/d quark masses and the quarks have electric
charge. This gives an estimate for the systematic uncer-
tainty from isospin/electromagnetism of 0.5%.

We must also include a systematic uncertainty from
working on lattices with finite spatial volume, albeit
large. Finite volume e�ects are small on these lattices
for the � mass and decay constant [3] and e�ects of simi-
lar size are expected in the form factor at fixed q2 [30, 31].
Because the mean squared radius is defined from the
small di�erence in values for the form factor as q2 moves
away from zero (where the form factor is defined to be
1), a small e�ect on the form factor at non-zero q2 can
become a significant e�ect on the radius. These e�ects
can be estimated from chiral perturbation theory and
in [30] using a lattice regularized chiral perturbation the-
ory. We extend that calculation to the lattice sizes that
we use here and also include the impact on the chiral
loops of having multiple tastes of � meson from using
staggered quarks. The di�erent � meson masses for the
lattice spacing values we have used here are given in [19].
We average the chiral loop over the 16 di�erent tastes of
� meson.

Figure 4 shows the resulting estimate of the finite-
volume e�ects, plotted as a function of the spatial size
of the lattice. The temporal extent of the lattice in the
calculation is taken as 8 times the spatial size so that it
is e�ectively infinite. The largest e�ects are seen for our
fine lattices where the relative error is 1.5%. We take this
as our systematic error.

Our error budget for �r2⇥V is given in Table III.
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FIG. 4. The relative systematic error from finite volume ef-
fects in the mean square radius of the vector form factor plot-
ted as a function of lattice spatial extent. The error is es-
timated from chiral perturbation theory [30], averaging over
the multiplet of di�erent taste � mesons for HISQ quarks.
Symbols mark the values for the very coarse, coarse and fine
ensembles used here.

Adding the systematic uncertainties in quadrature as the
second uncertainty gives our result:

�r2⇥(�)V = 0.403(18)(6)fm2 (8)

to be compared to 0.431(10) fm2 from the experimental
results of [1] using the same fit form.

B. Scalar Form Factor

1. Results for the connected contribution

We begin by discussing our results for the connected
contribution to the scalar form factor of the �. This is
the result calculated from 3-point functions of the form
sketched in the central diagram of Fig. 1 in which the
scalar current is composed of the light quarks which are
the valence quarks of the �. Although this form fac-
tor does not correspond to a physically realisable process
(even if we had a particle with which to produce a scalar
current) it is nevertheless possible and useful to compare
di�erent lattice QCD calculations for it. Di�erent for-
malisms within lattice QCD should give the same results
in the continuum and chiral limits for the mean-square
radius from the connected scalar form factor. A key is-
sue, to be discussed further below, is then how big the
additional contribution is from quark-line disconnected
diagrams.
The calculation for the connected scalar form factor

proceeds in an identical way to that of the vector form
factor discussed in Section IIA. We calculate the 3-point
function given as the central figure of Fig. 1 with a scalar
current made from light quarks inserted as J . We use the
same light quark propagators and 2-point functions as for



Dependence on pion mass
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Summary
• Full Lattice QCD calculation of the pion vector 

electromagnetic form factor 
- physical pion mass
- can choose the q2 range
- determine the charge radius:
  our result is 

• Compare with experiment - get good agreement

• We also calculate the scalar form factor, including 
disconnected pieces, finding the scalar radii 

hr2�iV = 0.403(18)(6) fm2

hr2�iS,singlet = 0.52(8)(4) fm2

hr2�iS,octet = 0.45(8)(4) fm2

hr2⇡iS,conn = 0.35(2)(4) fm2



Thank you!
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Spare slides



Errors: 
Finite 

volume 
and taste
• Estimate errors 

using chiral 
perturbation theory 
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