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Introduction

Goal: QCD phase diagram

µ

T

Hadrons

Quark-Gluon
Plasma

Nuclear matter

Colour
Superconductor?

Critical point?

Still largely unknown
Full thermodynamical study of QCD (phase transitions, etc)
Applications in cosmology (e.g. neutron stars, early universe)
Possible guide for heavy-ion collision experiments
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Complex Langevin Equation

CLE: Motivation

Sign problem: Inclusion of a chemical potential to an Euclidean path integral
makes the action complex
Average values for observables then rely on precise cancellations of oscillating
quantities
In QCD this is manifested in the fermion determinant

[det M (U , µ)]∗ = det M (U ,−µ∗)

which is, for real chemical potential µ, complex
Results from Hybrid Monte-Carlo simulations become unreliable if µ/T � 1,
where the sign problem is severe
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Complex Langevin Equation

CLE: Stochastic quantization

Add fictitious time dimension θ to gauge links
Evolve them according to a Langevin equation

Uxµ(θ + ε) = RxµUxµ(θ) , Rxµ = exp
[
iλa(εDa

xµS +
√
εηa

xµ)
]
,

where λa are the Gell-Mann matrices, ε is the stepsize, ηa
xµ are white noise

fields satisfying
〈ηa

xµ〉 = 0 , 〈ηa
xµη

b
yν〉 = 2δabδxyδµν ,

S is the QCD action and Da
xµ is defined as

Da
xµf (U ) = ∂

∂α
f (eiαλa

Uxµ)
∣∣∣∣
α=0

Quantum expectation values are computed as averages over the Langevin
time θ after the system reaches equilibrium at θ = Ttherm

〈O〉 = lim
T→∞

1
T − Ttherm

∫ T

Ttherm

O(θ)dθ
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Complex Langevin Equation

CLE: Complexification

Allow gauge fields to be complex, i.e., R 3 Aa
µ(x)→ Aa

µ(x) ∈ C
On the lattice this means SU(3) 3 Uxµ → Uxµ ∈ SL(3,C)
Use U−1

xµ instead of U †xµ as
it keeps the action holomorphic;
they coincide on SU(3) but on SL(3,C) it is U −1 that represents the
backwards-pointing link.

That means the plaquette is now

Ux,µν = UxµUx+µ,νU−1
x+ν,µU−1

x,ν ,

and the Wilson action reads

S [U ] = −β3
∑

x

∑
µ<ν

Tr
[

1
2
(
Ux,µν + U−1

x,µν
)
− 1
]
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Complex Langevin Equation

CLE: Complexification - Gauge cooling

During simulations monitor the distance from the unitary manifold with

d = Tr
∑
x,µ

[
UxµU †xµ − 1

]
≥ 0

Gauge cooling : Use gauge transformations to keep the system as close as
possible to SU(3), i.e., minimise the imaginary part of Aa

µ(x)

Uxµ → ΛxUxµΛ−1
x+µ , Λx = exp [−εαλaf a

x ]

where
f a
x = 2Tr

[
λa
(

UxµU †xµ −U †x−µ,µUx−µ,µ

)]
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Complex Langevin Equation

Gauge cooling example
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In SL(3,C) the system has more freedom to “wander” around. Gauge cooling
helps preventing convergence to wrong results.
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Results Tests in pure Yang-Mills

Deconfinement transition

Goals:
Show that CLE works for real theories as well

Test if gauge cooling can replace re-unitarisation in those cases

Reproduce known values for the deconfinement transition
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Results Tests in pure Yang-Mills

Deconfinement transition
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CLE reproduces the transition in agreement with the literature (hep-lat/9405018).
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Results Tests in pure Yang-Mills

Deconfinement transition
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Results Tests in HDQCD

Heavy-dense QCD

Heavy-dense approximation
Heavy quarks → spatial part of fermion determinant does not contribute, but
temporal part is exact (κ→ 0, µ→∞ , κeµ = const):

det M (U , µ) =
∏
~x

{
det
[
1 + (2κeµ)Nτ P~x

]2

×det
[
1 +

(
2κe−µ

)Nτ P−1
~x

]2
}

Polyakov loop
P~x =

∏
τ

U4(~x, τ)

Exhibits the sign problem: [det M (U , µ)]∗ = det M (U ,−µ∗)
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Results Tests in HDQCD

Heavy-dense QCD

Goals
Assert the plaquette’s continuity from imaginary to real chemical potential

Check for limitations of CLE in a complex theory
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Results Tests in HDQCD

Plaquette as a function of µ2 in HDQCD
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Continuity between real theory at µ2 < 0 and complex one at µ2 > 0.
Dashed lines are linear fits.
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Results Tests in HDQCD

Plaquette in HDQCD
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Statistical fluctuations are compatible with linear fit for β = 6.2 and 6.0.
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Results Tests in HDQCD

HDQCD at β = 5.4
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When the distance from SU(3) gets too large the simulation breaks down.
The imaginary part is no longer a “small deformation” to the QCD action.
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Conclusion

Summary

Complex Langevin equation
Reproduces known results for theories without the sign problem

Allows simulations of theories that exhibit the sign problem

Gives consistent results when transitioning from real to complex theories

Opens the door to probing the entire phase diagram of QCD

Stay tuned for Ben Jäger’s talk on the HDQCD phase diagram
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Backup

Gauge cooling

Gauge cooling analogy
In a real theory gauge fixing minimises

W ∼
∑
x,µ

Tr
[
Uxµ + U †xµ

]
∼ a2

∑
x,µ

Tr
[
A2
µ(x)

]
+O(a3)

with a “force”

f a
x = Tr [λa (Uxµ −Ux−µ,µ)− h.c.] = a2∂µAa

µ(x) +O(a3)

Analogously, gauge cooling minimises

d ∼
∑
x,µ

Tr
[
UxµU †xµ

]
∼ a2

∑
x,µ

Tr
[
B2
µ(x)

]
+O(a3) , Bµ(x) = Im [Aµ(x)]

with a “force”

f a
x = 2Tr

[
λa
(

UxµU †xµ −U †x−µ,µUx−µ,µ

)]
= a2∂µBa

µ(x) +O(a3)
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