Phase structure of Nf=3 QCD at finite temperature and density by Wilson-Clover fermions arXiv:1504.00113

#### Shinji Takeda

Kanazawa University

in collaboration with X-Y. Jin, Y. Kuramashi, Y. Nakamura & A. Ukawa

Lattice 2015 in Kobe

# Goal

#### Curvature of critical line (surface) in µ-m plane is +/-?



# Goal

#### Curvature of critical line (surface) in $\mu$ -m plane is +/-?

#### de Forcrand & Philipsen 2007

- Staggered fermions
- Imaginary chemical potential
- at finite lattice spacing: N<sub>t</sub>=4

#### OURS

- Wilson-clover fermions
- Phase-reweighting
- at finite lattice spacing: N<sub>t</sub>=6













## For finite density



#### For finite density





# Simulation details

- Nf=3 Clover with NP c<sub>sw</sub> + Iwasaki gauge
- Phase reweighting
  - Evaluate phase exactly
  - Det. is computed by using reduction method together with LAPACK/GPGPU
    Gattringe
- Parameters:
  - $N_T = 6 \& a\mu = 0.1 \Rightarrow \mu/T = 0.6$
  - $V=8^3$ , 10<sup>3</sup>, 12<sup>3</sup>
  - β=1.70-1.77, κ=0.1386-0.1415
  - configurations = O(10k) for each parameter set

- $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{iN_{\rm f}\theta} \rangle_{||}}{\langle e^{iN_{\rm f}\theta} \rangle_{||}}$ 
  - Gattringer 2010, Takeda et al., 2012

#### Cumulant of chiral condensate



### Cumulant of chiral condensate



## Cumulants of chiral condensate



- phase RW
- multi-ensemble RW
- multi-parameter RW
  κ & μ

### **Re-weighting factor**



The sign problem is under controlled

#### Kurtosis intersection for chiral cond.



















Along the critical line, 3-dim Z<sub>2</sub> universality class is maintained

#### Phase structure in bare parameter space



#### Phase structure in bare parameter space





# Summary

- 3-dim Z<sub>2</sub> universality class is favored along the critical line
- Curvature is positive in contrast to staggered results (negative). Why?
- Lattice artifact can be large
- One has to take the continuum limit to draw a clear conclusion
- Larger N<sub>T</sub>=8,10,..., it is hard....
- New strategy is desired

#### **BACKUP SLIDES**

Critical exponent  $\gamma/\nu$ 





Consistent with 3-dim Z<sub>2</sub> Universality class

#### Cumulants of quark condensate



