A Multigrid Bases Eigensolver for the Hermitian Wilson Dirac Operator

Gunar Bali ${ }^{b}$, Sara Collins ${ }^{b}$, Andreas Frommer ${ }^{a}$, Karsten Kahl ${ }^{a}$, Issaku Kanamori ${ }^{c}$, Matthias Rottmann ${ }^{a}$, and Jakob Simeth ${ }^{b}$
a: Bergische Universität Wuppertal
b : Universität Regensburg c: Hiroshima University

July 15, 2015

Outline

AMG for Lattice QCD

Rayleigh Quotient Iteration + AMG

Numerical Results

Summary \& Outlook
M. Rottmann et al., MG Eigensolver for Q

Adaptive Algebraic Multigrid Approach for $D^{\text {(non-Hermitian) }}$

Two-grid error propagator for ν steps of post-smoothing

$$
E_{2 g}^{(\nu)}=\underbrace{(1-M D)^{\nu}}_{\text {smoother }} \underbrace{\left(1-P D_{c}^{-1} P^{\dagger} D\right)}_{\text {coarse grid correction }}, \underbrace{D_{c}:=P^{\dagger} D P}_{\text {coarse operator }}
$$

- low accuracy for D_{c}^{-1} and M is sufficient
- introduce recursive construction for $D_{c} \rightarrow$ multigrid

To Do: Define interpolation P and smoother M

DD- α AMG ${ }^{[A-X i v: 1303.1377,1307.6101]}$

M: Schwarz Alternating Procedure (SAP) [Hermann Schwarz 1870; Martin Lüscher 2003]
P: Aggregation based Interpolation [Brannick, Clark et al. 2010]

The Algebraic Multigrid Principle

Smoother: $\quad 1-M D$

- effective on "large eigenvectors"
- "small eigenvectors" remain

$$
D v_{i}=\lambda_{i} v_{i} \quad \text { with } \quad\left|\lambda_{1}\right| \leq \ldots \leq\left|\lambda_{3072}\right|
$$

The Algebraic Multigrid Principle

Coarse-grid correction: $\quad 1-P D_{c}^{-1} P^{\dagger} D$

- small eigenvectors built into interpolation P
\Rightarrow effective on small eigenvectors

$$
D v_{i}=\lambda_{i} v_{i} \quad \text { with } \quad\left|\lambda_{1}\right| \leq \ldots \leq\left|\lambda_{3072}\right|
$$

Aggregation + Small EV

The Algebraic Multigrid Principle

$$
\text { Two-grid method: } \quad E_{2 g}=(1-M D)\left(1-P D_{c}^{-1} P^{\dagger} D\right)
$$

- complementarity of smoother and coarse-grid correction
- effective on all eigenvectors!

DD- α AMG

$$
D v_{i}=\lambda_{i} v_{i} \quad \text { with } \quad\left|\lambda_{1}\right| \leq \ldots \leq\left|\lambda_{3072}\right|
$$

AMG for D in Practice: Scaling with the bare quark mass
Configuration: $64 \times 64^{3}, 128$ cores

- lighter quark mass $m_{0} \rightarrow$ more ill-conditioned system
- AMG less sensitive to condition number than Krylov subspace methods

Adaptive Algebraic Multigrid Approach for $Q=\gamma_{5} D$

Construct P such that $P \gamma_{5}=\gamma_{5} P$
Replacing $D \rightarrow Q=\gamma_{5} D$ we obtain the two-grid error propagator

$$
\tilde{E}_{2 g}^{(\nu)}=\underbrace{(1-M Q)^{\nu}}_{\text {requires new smoother }} \underbrace{\left(1-P Q_{c}^{-1} P^{\dagger} Q\right)}_{=1-P D_{c}^{-1} P^{\dagger} D}, \underbrace{Q_{c}:=P^{\dagger} Q P}_{\text {new coarse operator }}
$$

- P is valid for D and Q
- P preserves $Q_{c}^{\dagger}=Q_{c} \rightarrow$ recursive application possible
- SAP smoother does not work anymore

Choice: Replace M by GMRES

- AMG for Q in practice a factor of 2 slower than DD- α AMG
- enables to compute $(Q-\sigma)^{-1}$ with AMG and thus to compute small eigenvectors of Q (application \rightarrow J. Simeth)

Calculating Eigenvectors of Q

Algorithm 1: Rayleigh Quotient Iteration + AMG

input: number of eigenvectors N, desired accuracy ε
output: eigenvectors v_{1}, \ldots, v_{N}
1 let v_{1}, \ldots, v_{N} orthonormalized set of random vectors and

$$
\lambda_{i}=0, \varepsilon_{i}=1 \forall i=1, \ldots, N
$$

2 build P from v_{1}, \ldots, v_{N}
3 while $\exists \varepsilon_{i}: \varepsilon_{i}>\varepsilon$ do
$4 \quad$ for all $i=1, \ldots, N$ with $\varepsilon_{i}>\varepsilon$ do
5
6
7
8
9
10
11
$\sigma \leftarrow \lambda_{i} \cdot \max \left(1-\varepsilon_{i}, 0\right)$
$v_{i} \leftarrow(Q-\sigma)^{-1} v_{i}$
$v_{i} \leftarrow v_{i}-\sum_{j=1}^{i-1}\left(v_{j}^{\dagger} v_{i}\right) v_{j}$
$v_{i} \leftarrow v_{i} /\left\|v_{i}\right\|$
update v_{i} in interpolation P
$\lambda_{i}=v_{i}^{\dagger} Q v_{i}$
$\varepsilon_{i}=\left\|Q v_{i}-\lambda_{i} v_{i}\right\|$

Comparison with PARPACK: Scaling with Lattice Size

- 20 smallest eigenpairs $\left(\lambda_{i}, v_{i}\right)$ with $\varepsilon<10^{-8}$
- different lattice sizes at constant physics
- Krylov subspace dimension for PARPACK: 100
- only two level multigrid solver, yet
- PARPACK for 64×40^{3} did not converge within $2.4 \cdot 10^{4}$ core-h

Comparison with PARPACK: Scaling with the Number of Eigenvectors N

- 48×24^{3} lattice
- Krylov subspace dimension for PARPACK: 200
- operator complexities: P is $\mathcal{O}(N), Q_{c}$ is $\mathcal{O}\left(N^{2}\right)$ \rightarrow coarse grid correction $/ Q_{c}^{-1}$ is at least $\mathcal{O}\left(N^{2}\right)$
- multigrid eigensolver more beneficial for small N

Comparison with PARPACK: Gauge Configuration Fluctuations

- 2 ensembles of configurations generated by a hybrid Monte-Carlo simulation
- 8 stochastically independent configurations from each ensemble
- only minor fluctuations in run-time

AMG for Lattice QCD

Rayleigh Quotient Iteration + AMG

Numerical Results

Summary \& Outlook

Summary

Summary

- multigrid based eigensolver performs well for
- large lattice sizes
- moderate number of eigenpairs
- speed up can be orders of magnitudes

Application

- calculating $\operatorname{tr}\left(Q^{-1}\right)$ via low mode averaging \rightarrow talk of J Jimeth (coming up next)
- deflated stochastic algorithm
- small number of deflated modes
- low accuracy modes

Outlook

Improve Eigensolver

- explore possible benefits of employing more than two levels in AMG solver
- try other shifted inversion based eigensolver approaches as
- Jacobi-Davidson
- shift-and-invert Arnoldi
- FEAST
M. Rottmann et al., MG Eigensolver for Q

Acknowledgments

All results computed on JUROPA at Jülich Supercomputing Centre (JSC)

FORSCHUNGSZENTRUM

Funded by Deutsche Forschungsgemeinschaft (DFG), Transregional Collaborative Research Centre 55 (SFB TR 55)

```
| \: \FB55
```

All configurations provided by BMW-c, QCDSF \& CLS

