A Multigrid Bases Eigensolver for the Hermitian Wilson Dirac Operator

Gunar Bali^b, Sara Collins^b, Andreas Frommer^a, Karsten Kahl^a, Issaku Kanamori^c, **Matthias Rottmann**^a, and Jakob Simeth^b

a: Bergische Universität Wuppertal b: Universität Regensburg c: Hiroshima University

July 15, 2015

AMG for Lattice QCD

Rayleigh Quotient Iteration + AMG

Numerical Results

Summary & Outlook

Adaptive Algebraic Multigrid Approach for $D^{(\text{non-Hermitian})}$

Two-grid error propagator for ν steps of post-smoothing

$$E_{2g}^{(\nu)} = \underbrace{(1 - MD)^{\nu}}_{\text{smoother}} \underbrace{(1 - PD_c^{-1}P^{\dagger}D)}_{\text{coarse grid correction}}, \underbrace{D_c := P^{\dagger}DP}_{\text{coarse operator}}$$

- low accuracy for D_c^{-1} and M is sufficient
- ▶ introduce recursive construction for $D_c \rightarrow$ multigrid

To Do: Define interpolation P and smoother M

DD-αAMG^[ArXiv:1303.1377,1307.6101] M: Schwarz Alternating Procedure (SAP) [Hermann Schwarz 1870; Martin Lüscher 2003] P: Aggregation based Interpolation [Brannick, Clark et al. 2010]

AMG for Lattice QCD

The Algebraic Multigrid Principle

Smoother: 1 - MD

- effective on "large eigenvectors"
- "small eigenvectors" remain

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

Numerical Results

The Algebraic Multigrid Principle

Coarse-grid correction: $1 - PD_c^{-1}P^{\dagger}D$

- ▶ small eigenvectors built into interpolation P
 - \Rightarrow effective on small eigenvectors

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

The Algebraic Multigrid Principle

Two-grid method: $E_{2q} = (1 - MD)(1 - PD_c^{-1}P^{\dagger}D)$

- complementarity of smoother and coarse-grid correction
- effective on all eigenvectors!

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

AMG for D in Practice: Scaling with the bare quark mass

Configuration: 64×64^3 , 128 cores

- ▶ lighter quark mass $m_0 \rightarrow$ more ill-conditioned system
- AMG less sensitive to condition number than Krylov subspace methods

Construct P such that $P\gamma_5=\gamma_5 P$ Replacing $D\to Q=\gamma_5 D$ we obtain the two-grid error propagator

$$\tilde{E}_{2g}^{(\nu)} = \underbrace{(1 - MQ)^{\nu}}_{\text{requires new smoother}} \underbrace{(1 - PQ_c^{-1}P^{\dagger}Q)}_{=1 - PD_c^{-1}P^{\dagger}D}, \underbrace{Q_c := P^{\dagger}QP}_{\text{new coarse operator}}$$

- P is valid for D and Q
- ▶ P preserves $Q_c^{\dagger} = Q_c \rightarrow$ recursive application possible
- SAP smoother does not work anymore

Choice: Replace M by GMRES

- AMG for Q in practice a factor of 2 slower than DD- α AMG
- ► enables to compute (Q − σ)⁻¹ with AMG and thus to compute small eigenvectors of Q (application → J. Simeth)

AMG for Lattice QCD

Calculating Eigenvectors of Q


```
input: number of eigenvectors N, desired accuracy \varepsilon
     output: eigenvectors v_1, \ldots, v_N
 1 let v_1, \ldots, v_N orthonormalized set of random vectors and
     \lambda_i = 0, \ \varepsilon_i = 1 \ \forall i = 1, \dots, N
 2 build P from v_1, \ldots, v_N
 3 while \exists \varepsilon_i : \varepsilon_i > \varepsilon do
           for all i = 1, \ldots, N with \varepsilon_i > \varepsilon do
 4
                 \sigma \leftarrow \lambda_i \cdot \max(1 - \varepsilon_i, 0)
 5
                 v_i \leftarrow (Q - \sigma)^{-1} v_i
 6
                v_i \leftarrow v_i - \sum_{i=1}^{i-1} (v_i^{\dagger} v_i) v_i
 7
                 v_i \leftarrow v_i / ||v_i||
 8
                                                                             eigenvalue \lambda_i
                                                                                  ^{2}
                 update v_i in interpolation P
 9
                                                                                  0
                                                                                 -2
                 \lambda_i = v_i^{\dagger} Q v_i
10
                                                                                 -6
                 \varepsilon_i = ||Qv_i - \lambda_i v_i||
11
                                                                                 -8
                                                                                             1000 1500 2000 2500 3000
                                                                                        500
                                                                                                   index
```


Comparison with PARPACK: Scaling with Lattice Size

- ▶ 20 smallest eigenpairs (λ_i, v_i) with $\varepsilon < 10^{-8}$
- different lattice sizes at constant physics
- Krylov subspace dimension for PARPACK: 100
- only two level multigrid solver, yet
- PARPACK for 64×40^3 did not converge within $2.4 \cdot 10^4$ core-h

Comparison with PARPACK: Scaling with the Number of Eigenvectors N

- ▶ 48×24^3 lattice
- ► Krylov subspace dimension for PARPACK: 200
- operator complexities: P is $\mathcal{O}(N)$, Q_c is $\mathcal{O}(N^2)$
 - \rightarrow coarse grid correction/ Q_c^{-1} is at least $\mathcal{O}(N^2)$
- multigrid eigensolver more beneficial for small N

Comparison with PARPACK: Gauge Configuration Fluctuations

- 2 ensembles of configurations generated by a hybrid Monte-Carlo simulation
- 8 stochastically independent configurations from each ensemble
- only minor fluctuations in run-time

AMG for Lattice QCD

Rayleigh Quotient Iteration + AMG

Numerical Results

Summary & Outlook

M. Rottmann et al., MG Eigensolver for Q

Summary

Summary

- multigrid based eigensolver performs well for
 - large lattice sizes
 - moderate number of eigenpairs
- speed up can be orders of magnitudes

Application

- calculating $tr(Q^{-1})$ via low mode averaging \rightarrow talk of J. Simeth (coming up next)
 - deflated stochastic algorithm
 - small number of deflated modes
 - Iow accuracy modes

Outlook

Improve Eigensolver

- explore possible benefits of employing more than two levels in AMG solver
- try other shifted inversion based eigensolver approaches as
 - Jacobi-Davidson
 - shift-and-invert Arnoldi
 - ► FEAST

Acknowledgments

All results computed on JUROPA at Jülich Supercomputing Centre (JSC)

Funded by Deutsche Forschungsgemeinschaft (DFG), Transregional Collaborative Research Centre 55 (SFB TR 55)

All configurations provided by BMW-c, QCDSF & CLS

