Exotic Quantum Critical Points with Staggered Fermions

Venkitesh Ayyar (joint work with Shailesh Chandrasekharan)

Lattice 2015, Kobe. July16, 2015

Work supported by DOE grant #DEFG0205ER41368.

Computational work done using the Open Science Grid and local Duke cluster.

Venkitesh Ayyar

Table of contents

Introduction

Our Lattice model

The Fermion Bag approach

Observables

Computational Approach

Results

Conclusions

Venkitesh Ayyar Exotic Quantum Critical Points with Staggered Fermions

Introduction

- Symmetries can forbid fermion mass terms.
- Conventionally mass terms are introduced via Spontaneous Symmetry Breaking signalled through a non-zero fermion bilinear condensate.
- Can symmetry-preserving interactions generate fermion masses dynamically without a fermion bilinear condensate ?
- We have a lattice model with staggered fermions in which a four-fermion interaction makes this possible.

Our Lattice model

Staggered fermion action for two flavors ψ^1 and ψ^2

$$S = S_0 + S_I$$

$$S_0 = \sum_{x,y} \left\{ \overline{\psi_x^1} D_{x,y} \psi_y^1 + \overline{\psi_x^2} D_{x,y} \psi_y^2 \right\}$$

$$D_{x,y} = \frac{1}{2} \sum_{\hat{\alpha}} \left(\delta_{x,y+\hat{\alpha}} - \delta_{x,y-\hat{\alpha}} \right) \eta_{\alpha,x} .$$

$$S_I = -U \sum_x \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^2} \psi_x^2$$

In addition to the usual discrete space-time symmetries¹, the action has a continuous SU(4) symmetry.

¹ M. Golterman and J Smit. Selfenergy and Flavor Interpretation of Staggered Fermions. Nucl.Phys., B245:61, 1984.

Venkitesh Avvar

Phase Transition

• Expectation from previous work \rightarrow

Mean field Calc by Lee, Shigemitsu, Shrock (1990),

Hasenfratz, Neuhaus (1989)

 We seem to observe a direct 2nd order phase transition.
 Weak and strong coupling phases have the same symmetries without any spontaneous symmetry breaking ¹

The Fermion Bag approach ^{1,2}

$$Z = \int \left[d\overline{\psi} d\psi \right] e^{-S_0} e^{U \sum_x \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^2} \psi_x^2}
= \int \left[d\overline{\psi} d\psi \right] e^{-S_0} \prod_x e^{U \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^2} \psi_x^2}
= \int \left[d\overline{\psi} d\psi \right] e^{-S_0} \prod_x \left(1 + U \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^2} \psi_x^2 \right)
= \sum_{\{m_x\}} \int \left[d\overline{\psi} d\psi \right] e^{-S_0} \prod_x \left(U \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^2} \psi_x^2 \right)^{m_x}$$

Figure : Fermion Bag configuration Assigning $m_x = 0$ or 1 to each lattice site $m_x = 0 \equiv$ free sites $m_x = 1 \equiv$ monomers Fermion Bag = Set of disconnected free sites

¹ S. Chandrasekharan - The Fermion bag approach to lattice field theories (2010)

² S. Chandrasekharan and A. Li - The generalized fermion bag approach (2011)

Venkitesh Ayyar

Weak coupling limit $Z = Det(D) \sum_{\{m_x\}} U^k Det(D_1^{-1}) Det(D_1^{-1})$

where D^{-1} is a $k \times k$ matrix of propagators.

Strong coupling limit $Z = \sum_{\{m_x\}} U^k Det(W_1) Det(W_1)$

where W_1 is a $(V - k) \times (V - k)$ matrix.

Can show that each determinant can be expressed as a square of smaller determinants.

Venkitesh Ayyar

Observables

Average monomer density :

$$\rho = \frac{1}{V} \sum_{x} \langle \overline{\psi_x^1} \psi_x^1 \overline{\psi_x^1} \psi_x^1 \rangle$$

Bosonic correlators :

$$C_1 = \langle \overline{\psi_0^1} \psi_0^1 \overline{\psi_{\frac{L}{2}}^1} \psi_{\frac{L}{2}}^1 \psi_{\frac{L}{2}}^1 \rangle$$

$$C_2 = \langle \overline{\psi_0^1} \psi_0^1 \overline{\psi_{\frac{L}{2}}^2} \psi_{\frac{L}{2}}^2 \rangle$$

Fermionic correlator :

$$F(x,y) = \langle \overline{\psi_x^1} \psi_y^1 \rangle$$

Venkitesh Ayyar

Extracting the condensate

- Σ is usually defined as: $\Sigma = \lim_{m \to 0} \lim_{V \to \infty} \langle \overline{\psi} \psi \rangle$
- With massless fermions, we can instead compute the bosonic correlator:

$$C = \langle \overline{\psi_0^1} \psi_0^1 \overline{\psi_{\frac{1}{2}}^1} \psi_{\frac{1}{2}}^1 \rangle$$

► We expect :

$$\lim_{V\to\infty} C\sim \Sigma^2$$

Venkitesh Ayyar

Fermion Mass

- Small U → Irrelevant coupling ⇒ massless fermions
- ► Very large U, $F(x, y) \sim e^{-(y-x)\ln U} \sim e^{-m(y-x)} \implies \text{massive fermions}$
- Exponential decay of all correlators indicates a zero condensate at very large U.

Venkitesh Ayyar

Computational approach

Configuration weights and observables are functions of determinants of propagators between monomers. **Previous approach**¹ :

- Configuration weights are computed at each step.
- Re-tracement results in recalculation of weights.
- Waste of computer time if acceptance is low.

Venkitesh Ayyar

¹ Ayyar, Chandrasekharan, Phys. Rev. D 91,065035, March 2014.

New approach :

- We compute all possible configuration weights of perturbations at the start and store them.
- Weights of subsequent configurations can be computed from these.
- Once perturbations are large, repeat the setup.
- Advantages: Faster updates and no re-tracement costs.
- Drawbacks : Memory requirement rises, so we need to update the lattice in sub-blocks.

Preliminary results

Have used Open Science Grid (OSG) for computations.

- Average monomer density rises sharply without any discontinuity
- Hints of a second order phase transition

Venkitesh Ayyar

Bosonic Correlator vs U

Venkitesh Ayyar

Bosonic Correlator vs L

Venkitesh Ayyar

Evidence that U_c is a 2^{nd} order critical point

For a second order transition, we expect: $C = L^{1+\eta} f \left[(U - U_c) L^{\frac{1}{\nu}} \right]$

- Fitting to find the critical exponents seems quite difficult due to the absence of the condensate.
- Preliminary calc. of Critical exponents:

$$\eta = 1.0(1), \ \nu = 1.2(1),$$

 $U_c = 0.946(5)$

Venkitesh Ayyar

4 D results

Venkitesh Ayyar

Conclusions

- Our lattice model suggests that fermions can acquire a mass, but without a fermion bilinear condensate(no Spontaneous Symmetry Breaking).
- In 3D, the transition from massless to massive phase is second order. Hence, we could have an interesting 3D continuum field theory.
- In 4D, preliminary results point to the possibility of a similar second order transition. This could be interesting for particle physics.

THANK YOU

Venkitesh Ayyar Exotic Quantum Critical Points with Staggered Fermions

Back-up slides

$$\langle \overline{\psi_x^1} \psi_x^1 \overline{\psi_y^1} \psi_y^1 \rangle = \frac{1}{Z} \det(W_1) \det(W_2)$$

Duke

For det $\neq 0$, $N_{even} = N_{odd}$ Can show that, det $(W_1) \neq 0 \implies \det(W_2) = 0$; det $(W_2) \neq 0 \implies \det(W_1) = 0$

Venkitesh Ayyar

Fcorr is zero

Fermionic correlator

$$\langle \overline{\psi_x^1} \psi_y^1 \rangle = \frac{1}{Z} \operatorname{det}(W) W^{-1}_{x,y}$$

- W can be written in terms of bags in block diagonal form.
- If x and y belong to the different bags, the correlator is zero.

Similarly, for bosonic correlator $\langle \overline{\psi}_x^1 \psi_x^1 \overline{\psi}_y^1 \psi_y^1 \rangle$: Can also show that we need a path of connecting free sites.

