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Introduction

I Symmetries can forbid fermion mass terms.

I Conventionally mass terms are introduced via Spontaneous
Symmetry Breaking signalled through a non-zero fermion
bilinear condensate.

I Can symmetry-preserving interactions generate fermion
masses dynamically without a fermion bilinear condensate ?

I We have a lattice model with staggered fermions in which a
four-fermion interaction makes this possible.
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Our Lattice model

Staggered fermion action for two flavors ψ1 and ψ2

S = S0 + SI

I S0 =
∑

x ,y

{
ψ1
xDx ,yψ

1
y + ψ2

xDx ,yψ
2
y

}
Dx,y = 1

2

∑
α̂

(
δx,y+α̂ − δx,y−α̂

)
ηα,x .

I SI = −U
∑

x ψ
1
xψ

1
xψ

2
xψ

2
x

In addition to the usual discrete space-time symmetries1, the action has a

continuous SU(4) symmetry.

1
M. Golterman and J Smit. Selfenergy and Flavor Interpretation of Staggered Fermions. Nucl.Phys.,

B245:61, 1984.
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Phase Transition

I Expectation from previous work →
Mean field Calc by Lee,Shigemitsu, Shrock (1990),

Hasenfratz, Neuhaus (1989)

I We seem to observe a direct 2nd
order phase transition.
Weak and strong coupling phases
have the same symmetries without
any spontaneous symmetry
breaking 1

 m=0
 Σ=0

 m≠0
 Σ=0

 m≠0
 Σ≠0

U=0 ∞Uc1 Uc2

 m=0
 Σ=0

 m≠0
 Σ=0

UcU=0 ∞

1
K. Slagle,Y.-Z. You, C. Xu, Phys. Rev. B 91, 115121 (2015)
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The Fermion Bag approach 1,2

Z =

∫ [
dψdψ

]
e−S0eU

∑
x ψ

1
xψ

1
xψ

2
xψ

2
x

=

∫ [
dψdψ

]
e−S0

∏
x

eUψ
1
xψ

1
xψ

2
xψ

2
x

=

∫ [
dψdψ

]
e−S0

∏
x

(
1 + Uψ1

xψ
1
xψ

2
xψ

2
x

)
=

∑
{mx}

∫ [
dψdψ

]
e−S0

∏
x

(
Uψ1

xψ
1
xψ

2
xψ

2
x

)mx

Figure : Fermion Bag
configuration

Assigning mx = 0 or 1 to each
lattice site

I mx = 0 ≡ free sites

I mx = 1 ≡ monomers

Fermion Bag ≡ Set of disconnected
free sites

1
S. Chandrasekharan - The Fermion bag approach to lattice field theories (2010)

2
S. Chandrasekharan and A. Li - The generalized fermion bag approach (2011)
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Weak coupling limit

Z = Det(D)
∑
{mx} U

kDet(D−1
1 )Det(D−1

1 )

where D−1 is a k × k matrix of propagators.

Strong coupling limit

Z =
∑
{mx} U

kDet(W1)Det(W1)

where W1 is a (V − k)× (V − k)matrix .

Can show that each determinant can be
expressed as a square of smaller determinants.
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Observables

I Average monomer density :

ρ =
1

V

∑
x

〈ψ1
xψ

1
xψ

1
xψ

1
x〉

I Bosonic correlators :

C1 = 〈ψ1
0ψ

1
0ψ

1
L
2

ψ1
L
2

〉

C2 = 〈ψ1
0ψ

1
0ψ

2
L
2

ψ2
L
2

〉

I Fermionic correlator :

F (x , y) = 〈ψ1
xψ

1
y 〉
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Extracting the condensate

I Σ is usually defined as: Σ = limm→0 limV→∞〈ψψ〉
I With massless fermions, we can instead compute the bosonic

correlator:

C = 〈ψ1
0ψ

1
0ψ

1
L
2

ψ1
L
2

〉

I We expect :
lim

V→∞
C ∼ Σ2
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Fermion Mass

I Small U → Irrelevant coupling =⇒
massless fermions

I Very large U,
F (x , y) ∼ e−(y−x) lnU ∼
e−m(y−x) =⇒ massive fermions

I Exponential decay of all correlators
indicates a zero condensate at very
large U.
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Computational approach

Configuration weights and observables are functions of
determinants of propagators between monomers.
Previous approach1 :

I Configuration weights are computed at each step.

I Re-tracement results in recalculation of weights.

I Waste of computer time if acceptance is low.

1
Ayyar, Chandrasekharan, Phys. Rev. D 91,065035, March 2014.
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New approach :
I We compute all possible configuration weights of perturbations at

the start and store them.

I Weights of subsequent configurations can be computed from these.

I Once perturbations are large, repeat the setup.

I Advantages: Faster updates and no re-tracement costs.

I Drawbacks : Memory requirement rises, so we need to update the

lattice in sub-blocks.
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Preliminary results

Figure : Average monomer density rises sharply without any discontinuity

Have used Open Science Grid (OSG) for

computations.

I Average monomer
density rises sharply
without any
discontinuity

I Hints of a second

order phase transition
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Bosonic Correlator vs U

Figure : Correlators peak for a certain value of U and then decay.

I Calculations on lattices
upto size 603

I Correlator increases
with coupling U.

I It reaches a maximum

for intermediate U and

then decreases.
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Bosonic Correlator vs L

Figure : Correlators decay exponentially indicating a zero condensate

I Correlators decay
=⇒ condensate = 0

I Near Uc = 0.94, C

decays like a power law
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Evidence that Uc is a 2nd order critical point

For a second order transition, we expect: C = L1+ηf
[
(U − Uc)L

1
ν

]

I Fitting to find the critical
exponents seems quite difficult
due to the absence of the
condensate.

I Preliminary calc. of Critical
exponents:

η = 1.0(1), ν = 1.2(1),

Uc = 0.946(5)
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4 D results

Figure : Average monomer density rises sharply without any discontinuity

I Results qualitatively
similar to 3D.
Correlator shows a peak
around U=1.75

I Average monomer
density rises sharply
around U=1.75 without
any discontinuity.

I Hints of a second-order

phase transition.
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Conclusions

I Our lattice model suggests that fermions can acquire a mass,
but without a fermion bilinear condensate( no Spontaneous
Symmetry Breaking).

I In 3D, the transition from massless to massive phase is second
order. Hence, we could have an interesting 3D continuum
field theory.

I In 4D, preliminary results point to the possibility of a similar
second order transition. This could be interesting for particle
physics.
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Back-up slides
〈ψ1

xψ
1
xψ

1
yψ

1
y 〉 = 1

Z det(W1) det(W2)

For det 6= 0,Neven = Nodd

Can show that,

det(W1) 6= 0 =⇒ det(W2) = 0;

det(W2) 6= 0 =⇒ det(W1) = 0

The 2 flavors ensure : Need for a path of free sites connecting 0
and t for a non-zero correlator G (0, t) !
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Fcorr is zero

Fermionic correlator

〈ψ1
xψ

1
y 〉 =

1

Z
det(W )W−1

x ,y

I W can be written in terms of bags in
block diagonal form.

I If x and y belong to the different
bags, the correlator is zero.

Similarily, for bosonic correlator 〈ψ1
xψ

1
xψ

1
yψ

1
y 〉 : Can also show that

we need a path of connecting free sites.
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