

Mass spectrum of mesons containing charm quarks – continuum limit results from twisted mass fermions

Krzysztof Cichy Goethe-Universität Frankfurt am Main Adam Mickiewicz University, Poznań, Poland

in collaboration with:

Martin Kalinowski (Goethe-Universität Frankfurt am Main) Marc Wagner (Goethe-Universität Frankfurt am Main)

Krzysztof Cichy

LATTICE 2015 - 1 / 24

Presentation outline
Introduction
Lattice exturn
Results
Summary

- 1. Introduction
- 2. Lattice setup
- 3. Results
- 4. Conclusions and prospects

Introduction Charm mesons

Lattice setup

Results

Summary

Charm mesons spectrum

- Several charm-containing mesons known experimentally:
 - \star some of them well established and in good agreement with quark models,
 - * some of them known with large errors and with masses and/or widths not well predicted by quark models (e.g. D_{s0}^* , D_{s1} tetraquarks?).
- Hence, an *ab initio* investigation highly interesting lattice.
- Charm physics on the lattice complicated due to the values of the lattice spacing if too coarse, charm quark mass large in lattice units.
- Nevertheless, with current computing resources many questions can be addressed, including the spectrum of charmed mesons.
- Moreover, charm quarks can be treated as dynamical, so all systematic effects can be controlled with reasonable precision.
- Our aim: compute the spectrum of *D* (charm-light) mesons, *D_s* (charm-strange) mesons and charmonium (charm-charm) using fully dynamical twisted mass ensembles generated by ETMC.

- We use dynamical twisted mass configurations generated by ETMC with $N_f = 2 + 1 + 1$ dynamical quark flavours [R. Baron et al., 2010, 2011].
- Gauge action Iwasaki action [Y. Iwasaki, 1985], i.e. $b_1 = -0.331$, $b_0 = 1 8b_1$,

$$S_G[U] = \frac{\beta}{3} \sum_x \left(b_0 \sum_{\mu,\nu=1} \operatorname{Re} \operatorname{Tr} \left(1 - P_{x;\mu,\nu}^{1 \times 1} \right) + b_1 \sum_{\mu \neq \nu} \operatorname{Re} \operatorname{Tr} \left(1 - P_{x;\mu,\nu}^{1 \times 2} \right) \right).$$

• Wilson twisted mass fermion action for the light sector [R. Frezzotti, P.A. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

$$S_{l}[\psi, \bar{\psi}, U] = a^{4} \sum_{x} \bar{\chi}_{l}(x) \left(D_{W} + m_{0,l} + i\mu_{l}\gamma_{5}\tau_{3} \right) \chi_{l}(x),$$

 $\chi_l = (\chi_u, \chi_d)$, $m_{0,l}$ and μ_l are the bare untwisted and twisted light quark masses.

• Twisted mass action for the heavy doublet [R. Frezzotti, G.C. Rossi, 2003, 2004]

$$S_{h}[\psi,\bar{\psi},U] = a^{4} \sum_{x} \bar{\chi}_{h}(x) \big(D_{W} + m_{0,h} + i\mu_{\sigma}\gamma_{5}\tau_{1} + \mu_{\delta}\tau_{3} \big) \chi_{h}(x),$$

 $\chi_h = (\chi_c, \chi_s), m_{0,h}$ – bare untwisted heavy quark mass, μ_{σ} – bare twisted mass with the twist along the τ_1 direction, μ_{δ} – mass splitting along the τ_3 direction that makes the strange and charm quark masses non-degenerate.

Renormalized strange and charm quark masses: $m_R^{s,c} = Z_P^{-1} (\mu_\sigma \mp (Z_P/Z_S)\mu_\delta).$

Krzysztof Cichy

LATTICE 2015 - 4 / 24

- Light quarks the same action as in the sea.
- Strange and charm introduce 2 strange (s, s') and 2 charm (c, c') quark flavours with the action for a single flavour f:

$$D_f = D_W + m_0 + i\mu_f\gamma_5.$$

- We take:
 - * either $\mu_{s/c} = -\mu_{s'/c'}$ call this TM setup (however, it is still non-unitary)

* or $\mu_{s/c} = \mu_{s'/c'}$ – call this Osterwalder-Seiler (OS) setup.

In this way, we avoid the mixing of strange and charm quarks, which would make the computations problematic.

- Formally, the lattice action includes a ghost action that exactly cancels the contributions of the additional valence quarks to the fermionic determinant.
- Such setup still guarantees **automatic** O(a) **improvement**.
- However, the non-unitarity has to be taken care of by appropriate matching.

Ensembles used

Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$	a [fm]
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	3.5	0.0885
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.1	0.0885
A80.24	1.90	$24^3 \times 48$	0.0080	34	0.163260	2.1	4.3	0.0885
B25.32	1.95	$32^3 \times 64$	0.0025	12	0.161240	2.6	3.2	0.0815
B55.32	1.95	$32^3 \times 64$	0.0055	26	0.161236	2.6	4.6	0.0815
B85.24	1.95	$24^3 \times 48$	0.0085	40	0.161231	2.0	4.3	0.0815
D15.48	2.10	$48^3 \times 96$	0.0015	9	0.156361	3.0	3.2	0.0619
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	3.0	3.7	0.0619
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	3.0	4.5	0.0619

Values of the lattice spacings, $\mu_{l,R}$ ($\overline{\mathrm{MS}}$, 2 GeV) and $m_{\pi}L$ from:

N. Carrasco et al. (ETM Collaboration), Up, down, strange and charm quark masses with $N_f = 2 + 1 + 1$ twisted mass lattice QCD, Nucl. Phys. B887 (2014) 19-68, arXiv: 1403.4504 [hep-lat].

Meson creation operators in tmLQCD

Presentation outline

Introduction

Lattice setup

Simulation setup – sea sector Simulation setup – valence sector

Ensembles

Meson creation

- operators Smearing
- Correlation matrices
- Results
- Summary

Our lattice meson creation operators are of the following from:

 $O_{\Gamma,\bar{\chi}^{(1)}\chi^{(2)}}^{\mathsf{twisted}} \equiv \frac{1}{\sqrt{V/a^3}} \sum_{\mathbf{n}} \bar{\chi}^{(1)}(\mathbf{n}) \sum_{\Delta \mathbf{n}=\pm \mathbf{e}_x, \pm \mathbf{e}_y, \pm \mathbf{e}_z} U(\mathbf{n};\mathbf{n}+\Delta \mathbf{n})\Gamma(\Delta \mathbf{n})\chi^{(2)}(\mathbf{n}+\Delta \mathbf{n}),$

where:

- \sum_{n} gives zero total momentum,
- $\sum_{\Delta n=\pm e_x,\pm e_y,\pm e_z}$ realizes spatial separation between quarks, such that the meson can have angular momentum,
- $\Gamma(\Delta n)$ is a suitable combination of spherical harmonics and γ matrices (determines total angular momentum, parity and charge conjugation properties (for charmonium)),
- $U(\mathbf{n};\mathbf{n}+\Delta\mathbf{n})$ is a gauge link,
- $\chi^{(1)}$, $\chi^{(2)}$ are twisted basis quark operators.

Smearing of gauge links and quark fields

Presentation outline

Introduction

Lattice setup

Simulation setup – sea sector

Simulation setup -

valence sector

Ensembles

Meson creation

operators

Smearing

Correlation matrices

Results

Summary

- We use standard smearing techniques to enhance the overlap between our trial states and low lying meson states:
 - * first, APE smearing of links, e.g. for A-ensembles: $N_{\rm APE} = 10$, $\alpha_{\rm APE} = 0.5$,
 - * second, Gaussian smearing of quark fields, e.g. for A-ensembles: $N_{\rm Gauss}=30,\ \kappa_{\rm Gauss}=0.5.$
- Smearing does not affect the irreducible representation of the cubic group and the total angular momentum O^J, parity *P* and charge conjugation *C* that are all determined by the meson creation operators.

Correlation matrices

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

For each sector, i.e. the same

- flavours $ar{\chi}^{(1)}\chi^{(2)}$,
- cubic representation O^J
- and $(\bar{c}c) \ \mathcal{C}$ (OS) or $\mathcal{C} \circ \mathcal{P}^{(\mathsf{tm})}$ (TM),

we compute temporal correlation matrices of meson creation operators.

 \longrightarrow Correlators in a given correlation matrix have different \mathcal{P} (parity broken by TM!) and spin (Γ structure).

Krzysztof Cichy

Introduction

Lattice setup

Results

Matching

Procedure

Extrapolations

Examples $\bar{c}c$

Summary $\bar{c}c$

Examples D_S

Summary D_S

Summary D

Summary

Results

Krzysztof Cichy

LATTICE 2015 - 10 / 24

Introduction

Lattice setup

Extrapolations Examples $\bar{c}c$

Summary $\bar{c}c$ Examples D_s

Summary D_S Summary D

Summary

Results

Matching Procedure

For each ensemble, we compute:

- m_K at 2 different values of the strange quark mass μ_s ,
- m_D at 2 different values of the charm quark mass μ_c .

This allows to extrapolate to the physical μ_s and μ_c quark masses by requiring that:

- $2m_K^2 m_\pi^2$ takes its physical value of $0.477 \,\mathrm{GeV}^2$,
- m_D takes its physical value of 1.865 GeV

for each ensemble in the TM non-unitary setup $(\mu_{s,c} = -\mu_{s',c'})$.

After this procedure, the OS non-unitary setup $(\mu_{s,c} = \mu_{s',c'})$ should give the same masses $2m_K^2 - m_\pi^2$ and m_D , but only in the continuum limit.

Other meson masses should also be the physical ones after extrapolating to the physical pion mass and to the continuum limit.

LATTICE 2015 - 11 / 24

Matching to physical meson masses

LATTICE 2015 - 12 / 24

Our procedure

Presentation outline Introduction Lattice setup

Results

Matching

Procedure

Extrapolations

Examples $\bar{c}c$

Summary $\bar{c}c$

Examples D_s

Summary D_S Summary D

Summary

To extract the physical meson masses, we use the following procedure:

- 1. We compute the relevant TM/OS correlation functions for:
 - 3 lattice spacings,
 - 3 light quark masses for each lattice spacing,
 - 2 strange quark masses per light quark mass,
 - 2 charm quark masses per strange quark mass (i.e. 4 pairs (μ_{s,1}, μ_{c,1}), (μ_{s,1}, μ_{c,2}), (μ_{s,2}, μ_{c,1}), (μ_{s,2}, μ_{c,2}) for each light quark mass μ_l).
- 2. We perform extra-/interpolations in strange/charm quark masses to obtain the correlators at the physical strange and charm quark masses (use jackknife with binning to account for autocorrelations and propagate the error from this tuning).
- 3. This gives us a set of 18 points per correlator (3 lattice spacings \times 3 quark masses \times 2 discretizations).

Presentation outline Introduction Lattice setup Results Matching Procedure Extrapolations

Examples $\bar{c}c$

Summary $\bar{c}c$ Examples D_s

Summary D_s

Summary D

Summary

Having this set of 18 points per correlator, we perform a combined **chiral and continuum extrapolation**, using the following fitting ansatz:

$$M^{TM}(a, m_{\pi}) = M + c^{TM}a^2 + \alpha^{TM}(m_{\pi}^2 - m_{\pi, phys}^2)$$

$$M^{OS}(a, m_{\pi}) = M + c^{OS}a^2 + \alpha^{OS}(m_{\pi}^2 - m_{\pi, phys}^2)$$

with 5 fitting parameters: M, c^{TM} , c^{OS} , α^{TM} , α^{OS} .

Note that we **enforce** a common continuum and physical pion mass limit for both discretizations.

Example extrapolations: J/ψ ($J^{PC} = 1^{--}$)

PDG value of the mass: 3096.920(10) GeV Our value of the mass: 3096(6) GeV χ^2 /d.o.f. of our fit: 0.36

Krzysztof Cichy

LATTICE 2015 - 15 / 24

Example extrapolations: η_c ($J^{\mathcal{PC}} = 0^{-+}$)

PDG value of the mass: 2981.1(1.1) GeV Our value of the mass: 2985(6) GeV χ^2 /d.o.f. of our fit: 0.54

Krzysztof Cichy

LATTICE 2015 - 16 / 24

Example extrapolations: χ_{c2} ($J^{\mathcal{PC}} = 2^{++}$)

PDG value of the mass: 3556.20(9) GeV Our value of the mass: 3560(12) GeV χ^2 /d.o.f. of our fit: 0.53

LATTICE 2015 - 17 / 24

Example extrapolations: $\eta_c[2S]$ $(J^{\mathcal{PC}} = 0^{-+})^{\text{GOETHE}}_{\text{UNIVERS}}$

PDG value of the mass: 3638.9(1.3) GeV Our value of the mass: 3726(38) GeV χ^2 /d.o.f. of our fit: 0.85

LATTICE 2015 - 18 / 24

Summary – charmonium spectrum

Krzysztof Cichy

LATTICE 2015 - 19 / 24

Example extrapolations: D_s ($J^{\mathcal{P}} = 0^-$)

PDG value of the mass: 1968.49(32) GeV Our value of the mass: 1964.8(3.6) GeV χ^2 /d.o.f. of our fit: 1.24

LATTICE 2015 - 20 / 24

Example extrapolations: D_s^* ($J^P = 1^-$)

PDG value of the mass: 2112.3(5) GeV Our value of the mass: 2110.7(5.2) GeV χ^2 /d.o.f. of our fit: 1.08

LATTICE 2015 - 21 / 24

Summary – D_s spectrum

Krzysztof Cichy

LATTICE 2015 - 22 / 24

Summary – *D* spectrum

Krzysztof Cichy

LATTICE 2015 - 23 / 24

Introduction

Lattice setup

Results

Summary

Conclusions and prospects

- We have shown a computation of the spectrum of D mesons, D_s mesons and charmonium, using maximally twisted mass sea quarks and 2 different valence quark discretizations.
- We have rather good control over the light quark mass dependence and cut-off effects.
- Problems with plateaus in certain cases needs a systematic analysis.
- Our plans:
 - * different fitting ansätze for chiral/continuum extrapolation,
 - systematic analysis of plateaus (assign systematic error from plateau choice),
 - \star comparison of TM/OS not enforcing a common continuum value,
 - \star 3rd light quark mass missing at one of the lattice spacings.

Introduction

Lattice setup

Results

Summary

Thank you for your attention!

Thank you for your attention!

Krzysztof Cichy

LATTICE 2015 - 25 / 24