Heavy $Q\bar{Q}$ pair free energies and screening masses at the QCD physical points

Attila Pásztor¹²³ apasztor@bodri.elte.hu

LATTICE 2015, Kobe

Based on: JHEP 1504 (2015) 138 (arXiv:1501.02173)

In collaboriation with S. Borsányi³ Z. Fodor¹³⁴ S. D. Katz¹² Cs. Török¹ K. K. Szabó³⁴

¹Eötvös University, Budapest

²MTA-ELTE Lendület Lattice Gauge Theory Group

³University of Wuppertal

⁴ Jülich Supercomputing Center

We are interested in deconfinement properties of QCD

- Quarkonia could give us a thermometer of the QGP, since the different quarkonia are expected to "dissociate" at different temperatures. Analogy: spectral analyis of stellar media
- WANTED: "dissociation" temperatures
- Problem: To calculate spectral functions, analytical continuation is needed, this is ill-posed
- Therefore, we consider a simpler, but related problem, static free energies
- Also, we are interested in the electric and magnetic screening lengths in the plasma

Static quark free energies

Excess free energy induced by a static test charge

 $F_Q(T) = -T \log \langle \operatorname{Tr} L(\vec{x}) \rangle$

In pure SU(N) gauge theory: order parameter Excess free energy induced by a static $Q\bar{Q}$ pair

$$F_{Q\bar{Q}}\left(r,T\right) = -T\log\left\langle \operatorname{Tr} L(\vec{r}+\vec{x})\operatorname{Tr} L^{\dagger}(\vec{x})\right\rangle$$

Given by the correlator of Polyakov loops.

The Polyakov-loop correlator

This couples directly only to electric gluon fields, since:

$$\operatorname{Tr} L = \operatorname{Tr} \mathcal{P} e^{ig \int_0^\beta d\tau A_4(\tau, \vec{x})}$$

but indirectly also to magnetic fields.

- ► In QED: (PP) falls algebraically, not exponentially, because of indirect coupling to magnetic fields, that are not screened.
- In QCD: magnetic fields also screened, but the screening mass is lower than the electric screening mass.

It would be nice to somehow disentangle the electric and magnetic sectors.

Screening masses - nonperturbative definition

Magnetic and electric screening masses

Use symmetry: Euclidean time reflection $\mathcal{R}=\mbox{Real}$ time \mathcal{CT} Arnold, Yaffe '95

$$\begin{array}{ccc} A_4(\tau, \mathbf{x}) \xrightarrow{\mathcal{R}} -A_4(-\tau, \mathbf{x}), & A_i(\tau, \mathbf{x}) \xrightarrow{\mathcal{R}} A_i(-\tau, \mathbf{x}) \\ & L \xrightarrow{\mathcal{R}} L^{\dagger} \end{array}$$

$$L_M \equiv (L + L^{\dagger})/2$$
$$L_E \equiv (L - L^{\dagger})/2$$

Use also C:

 $A_4 \xrightarrow{\mathcal{C}} A_4^*$ and $L \xrightarrow{\mathcal{C}} L^*$

$$L_{M\pm} = (L_M \pm L_M^*)/2$$

 $L_{E\pm} = (L_E \pm L_E^*)/2$

Screening masses - nonperturbative definition

Magnetic and electric screening masses

$$L_{M\pm} = (L_M \pm L_M^*)/2$$
 $L_{E\pm} = (L_E \pm L_E^*)/2$

Also $\operatorname{Tr} L_{E+} = 0 = \operatorname{Tr} L_{M-}$, so we have 2 correlators:

$$C_{M+}(r,T) \equiv \left\langle \sum_{\mathbf{x}} \operatorname{Tr} L_{M+}(\mathbf{x}) \operatorname{Tr} L_{M+}(\mathbf{x}+\mathbf{r}) \right\rangle - \left| \left\langle \sum_{\mathbf{x}} \operatorname{Tr} L(\mathbf{x}) \right\rangle \right|^{2}$$
$$C_{E-}(r,T) \equiv - \left\langle \sum_{\mathbf{x}} \operatorname{Tr} L_{E-}(\mathbf{x}) \operatorname{Tr} L_{E-}(\mathbf{x}+\mathbf{r}) \right\rangle$$

We decomposed the full Polyakov-loop correlator into 2 pieces:

$$C(r,T) - C(r \to \infty, T) = C_{M+}(r,T) + C_{E-}(r,T),$$

Two correlation lengths: m_M and m_E

Lattice details

- Tree-level Symanzik improved gauge action
- Stout-improved staggered fermion action with 2+1 dynamical quarks
- ▶ Physical quark masses, obtained by reproducing the physical ratios m_π/f_K and m_K/f_K
- ▶ $N_s^3 \times N_t = 24^3 \times 6, 24^3 \times 8, 32^3 \times 10, 32^3 \times 12, 48^3 \times 16$
- Temperature range: 150MeV...450MeV
- Same action as in: JHEP 0601 (2006), 089 The Equation of state in lattice QCD: With physical quark masses towards the continuum limit

Prescription

$$F_{\bar{Q}Q}^{ren}(r,\beta,T) = F_{\bar{Q}Q}(r,\beta,T) - F_{\bar{Q}Q}(r \to \infty,\beta,T_0)$$

Single quark free energy

Since the divergence in the $Q\bar{Q}$ free energy is independent of r, it is enough to remove it at $r \to \infty$ i.e. it is enough to renormalize the single heavy quark free energy. Prescription:

$$F_Q^{ren}(\beta,T;T_0) = F_Q(\beta,T) - F_Q(\beta,T_0)$$

 $Q\bar{Q}$ free energy

$$\begin{split} \tilde{F}_{\bar{Q}Q}(r,\beta,T) &= F_{\bar{Q}Q}(r,\beta,T) - F_{\bar{Q}Q}(r \to \infty,\beta,T) \\ F_{\bar{Q}Q}(r \to \infty,\beta,T) &= 2F_Q(T) \\ F_{\bar{Q}Q}^{ren}(r,\beta,T;T_0) &= \tilde{F}_{\bar{Q}Q}(r,\beta,T) + 2F_Q^{ren}(\beta,T;T_0) \end{split}$$

Free energy - effect of gauge field smearing (HYP)

Free energy - continuum results

Screening masses

Recap

In the beginning, we decomposed the full Polyakov-loop correlator into 2 pieces:

$$C(r,T) - C(r \to \infty,T) = C_{M+}(r,T) + C_{E-}(r,T),$$

The two pieces define two correlation lengths:

$$C_{M+}(r,T) \xrightarrow{r \to \infty} K_M(T) \frac{\mathrm{e}^{-m_M(T)r}}{r},$$
$$C_{E-}(r,T) \xrightarrow{r \to \infty} K_E(T) \frac{\mathrm{e}^{-m_E(T)r}}{r},$$

Outline

- Some simple properties already seen from the raw data
- Detailed analysis

Screening masses - illustrating $m_E > m_M$

Screening masses - illustrating $m_M \propto T$

Screening masses - illustrating $m_E \propto T$

Screening masses - results at finite lattice spacing

 $N_{t} = 8$

Screening masses - results at finite lattice spacing

 $N_{t} = 10$

Screening masses - results at finite lattice spacing

 $N_{t} = 12$

Screening masses - continuum results

Screening masses - continuum results and comparisons

We studied Polyakov loop correlators in finite temperature QCD with physical quark masses.

- 1. We performed a continuum limit extrapolation of the single quark and $Q\bar{Q}$ pair free energies, calculable from the Polyakov loop.
- 2. Using a decomposition of the Polyakov loop correlator to an Euclidean time reflection odd and even part, we determined electric and magnetic screening masses in the QGP.

Backup - renormalization

Single quark free energy

Single quark free energy

- Problem: limited temperature range for the continuum limit
- E.g. for $T_0 = 200 \text{MeV}$ if I want to do c.l. from the $N_t = 8, 10, 12$ lattices, the temperature range will be (6/8)200 MeV = 150 MeV to (16/12)200 MeV = 266.7 MeV.
- ► Simple trick: use more values of *T*₀ and shift them together in the continuum:

$$F_Q^{\text{ren}}(T;T_0) - F_Q^{\text{ren}}(T;T_1) = F_Q^{\text{ren}}(T_1;T_0)$$

Error sources

- Statistical error (jacknife)
- Method of the different interpolations
- Different point for continuum extrapolation ($N_t = 8, 10, 12 \text{ vs}$ $N_t = 8, 10, 12, 16$)
- Histogram method, AIC weights

Backup - single quark free energy continuum results

Backup - discretization errors in the free energy

Backup - discretization errors in the free energy

Backup - Screening Masses - Steps of analysis

- 1. fix N_t , β , \rightarrow fits for m_M , m_E
- 2. fix N_t , interpolation in T (polynomial fit)
- 3. Continuum limit in $1/N_t^2 \propto a^2$ from $N_t=8,10,12$
- 4. Comment: screening mass can be extracted without renormalizing the correlator

The first step is a little tricky, if you don't do it carefully you can be off by lots of σ s (\rightarrow Kolmogorov-Smirnov test).

Backup - Screening masses - correlated fitting

Procedure

- Correlated fitting
- ► Careful choice of fit interval: Kolmogorov-Smirnov test for the uniform distribution of *Q*
- Systematic error: choice of fit interval (within the limits where the previous test is OK) AIC or Q weights
- Stat. error: jackknife

Choice of fit interval

- $\blacktriangleright~m \sim T$ in both cases \rightarrow choose the fit intervals in units of rT
- \blacktriangleright If χ^2 calc. from data has χ^2 distribution $\rightarrow Q$ has uniform distribution
- we fix the range of all the fits in rT and perform a KS test

Correlator type	$(rT)_{\min}$	$(rT)_{\rm max}$	Pr (KS, uniform)
Magnetic	0.43	0.9	0.007
Magnetic	0.45	0.9	0.016
Magnetic	0.465	0.9	0.30
Magnetic	0.5	0.9	0.38
Magnetic	0.61	0.9	0.96
Electric	0.3	0.65	$3 \cdot 10^{-7}$
Electric	0.32	0.65	0.018
Electric	0.35	0.65	0.31
Electric	0.43	0.65	0.94

Backup - screening mass comparisons

► This work:

$$m_E/T = 7.31(25)$$
 $m_M/T = 4.48(9)$
 $m_E/m_M = 1.63(8)$

▶ $N_f = 2$ IQCD, $m_\pi/m_\rho = 0.65$, $N_t = 4$ Maezawa, Aoki et al. 2010

$$m_E/T = 13.0(11)$$
 $m_M/T = 5.8(2)$
 $m_E/m_M = 2.3(3)$

▶ $\mathcal{N}=4$ SYM, large N_c limit, AdS/CFT Bak, Karch, Yaffe 2007 $m_E/T=16.05 \quad m_M/T=7.34$ $m_E/m_M=2.19$

▶ dimensionally reduced 3D effective theory, $N_f = 3$ massless quarks Hart, Laine, Philipsen 2000

$$m_E/T = 7.9(4)$$
 $m_M/T = 4.5(2)$
 $m_E/m_M = 1.76(17)$

Backup - the choice of the ansatz

Kolmogorov-Smirnov probabilities

Típus	$(rT)_{\min}$	$Pr(\mathrm{KS,exp.})$	Pr(KS, Yuk.)
М	0.43	$1 \cdot 10^{-16}$	0.007
M	0.45	$2 \cdot 10^{-14}$	0.016
M	0.465	$3 \cdot 10^{-8}$	0.30
M	0.5	$4 \cdot 10^{-5}$	0.38
M	0.61	0.86	0.96
M	0.7	0.63	0.96
E	0.3	$1 \cdot 10^{-17}$	$3 \cdot 10^{-7}$
E	0.32	$4 \cdot 10^{-6}$	0.018
E	0.35	$5 \cdot 10^{-3}$	0.31
E	0.43	0.99	0.94
E	0.45	0.99	0.99

Exp. ansatz gives masses approx. 20 - 30% higher

Backup - the choice of the ansatz

EFT approach
QCD = 4D YM + quarks,
$$\omega_n \sim 2\pi T$$

 \downarrow PT
EQCD = 3D YM + A₀, $m_{el} \sim gT$
 \downarrow PT
MQCD = 3D YM, $g_3^2 \sim g^2 T$

Non-perturbative