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The muon g − 2

One of the most precise tests of the Standard Model

aµ ≡
(g − 2

2

)
µ
=


116592080(63) × 10−11 experiment

116591790(65) × 10−11 theory

δaµ = (290 ± 90) × 10−11, a 3σ deviation
I Fermilab 989 has goal to reduce experimental error by factor of 4
I Leading theory errors come from:

Hadronic vacuum
polarization, which can
be improved using
e+e− → hadrons
experiments

Hadronic light-by-light
(HLbL) sca�ering, which
is not easily obtained
from experiments
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Light-by-light sca�ering

Before computing aHLbL
µ , start by studying light-by-light sca�ering by itself.

This has much more information than just aHLbL
µ . We can:

I Compare against phenomenology.
I Test models used to compute aHLbL

µ .
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La�ice four-point function

Directly compute four-point function of vector currents
I Use one local current ZV Jl

µ at the source point.
I Use three conserved currents Jc

µ .
In position space:

Π
pos
µ1 µ2 µ3 µ4 (x1,x2,0,x4) =

〈
ZV Jl

µ3
(0)[Jc

µ1
(x1)Jc

µ2
(x2)Jc

µ4
(x4)

+ δµ1 µ2δx1x2Tµ1 (x1)Jc
µ4
(x4)

+ δµ1 µ4δx1x4Tµ4 (x4)Jc
µ2
(x2)

+ δµ2 µ4δx2x4Tµ4 (x4)Jc
µ1
(x1)

+ δµ1 µ4δµ2 µ4δx1x4δx2x4Jc
µ4
(x4)]

〉
,

where Tµ (x ) is a “tadpole” contact operator. This satisfies the
conserved-current relations,

∆x1
µ1
Π

pos
µ1 µ2 µ3 µ4 = ∆x2

µ2
Π

pos
µ1 µ2 µ3 µ4 = ∆x4

µ4
Π

pos
µ1 µ2 µ3 µ4 = 0.
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�ark contractions

Compute only the fully-connected contractions, with fixed kernels summed
over x1 and x2:

Π
pos′
µ1 µ2 µ3 µ4 (x4; f1, f2) =

∑
x1,x2

f1 (x1)f2 (x2)Π
pos
µ1 µ2 µ3 µ4 (x1,x2,0,x4)

1X X2

X4

1X X2

X4

1X X2

X40 0 0

Generically, need the following propagators:
I 1 point-source propagator from x3 = 0
I 8 sequential propagators through x1, for each µ1 and f1 or f ∗1
I 8 sequential propagators through x2

I 32 double-sequential propagators through x1 and x2, for each (µ1,µ2)
and (f1, f2) or (f ∗1 , f

∗
2 )
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Kinematical setup

Obtain momentum-space Euclidean four-point function using plane waves:

ΠE
µ1 µ2 µ3 µ4

(p4; p1,p2) =
∑
x4

e−ip4 ·x4Π
pos′
µ1 µ2 µ3 µ4 (x4; f1, f2)

����fa (x )=e−ipa ·x
.

Thus, we can e�iciently fix p1,2 and choose arbitrary p4.

I Full 4-point tensor is very complicated: it can be decomposed into 41
scalar functions of 6 kinematic invariants.

I Forward case is simpler:

Q1 ≡ p2 = −p1, Q2 ≡ p4.

Then there are 8 scalar functions that depend on 3 kinematic
invariants.
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La�ice ensembles

Use CLS ensembles: Nf = 2 O(a)-improved Wilson, with a = 0.063 fm.

1. mπ = 451 MeV, 64 × 323

2. mπ = 324 MeV, 96 × 483

3. mπ = 277 MeV, 96 × 483

Keep only u and d quarks in the electromagnetic current, i.e.,

Jl
µ =

2
3

ūγµu −
1
3

d̄γµd .

Study forward case with a few di�erent Q1 and also more general
kinematics.
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Forward LbL amplitude

Take the amplitude for forward sca�ering of transversely polarized virtual
photons,

MTT (−Q2
1 ,−Q2

2 ,ν ) =
e4

4
Rµ1 µ2Rµ3 µ4Π

E
µ1 µ2 µ3 µ4

(−Q2;−Q1,Q1),

where ν = −Q1 · Q2 and Rµν projects onto the plane orthogonal to Q1,Q2.

A subtracted dispersion relation at fixed spacelike Q2
1 ,Q

2
2 relates this to the

γ ∗γ ∗ → hadrons cross sections σ0,2:

MTT (q2
1,q

2
2,ν )−MTT (q2

1,q
2
2,0) =

2ν2

π

∫ ∞

ν0

dν ′

√
ν ′2 − q2

1q2
2

ν ′(ν ′2 − ν2 − iϵ )
[σ0 (ν

′) + σ2 (ν
′)]

This is model-independent and will allow for systematically improvable
comparisons between la�ice and experiment.
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Model for σ (γ ∗γ ∗ → hadrons)

(V. Pascalutsa, V. Pauk, M. Vanderhaeghen, Phys. Rev. D 85 (2012) 116001)

Include single mesons and π+π − final states:

σ0 + σ2 =
∑
M

σ (γ ∗γ ∗ → M) + σ (γ ∗γ ∗ → π+π −)

Mesons:
I pseudoscalar (π 0, η′)
I scalar (a0, f0)
I axial vector (f1)
I tensor (a2, f2)

σ (γ ∗γ ∗ → M) depends on the meson’s:
I mass m and width Γ

I two-photon decay width Γγγ
I two-photon transition form factor

F (q2
1,q

2
2 )

assume F (q2
1,q

2
2 ) = F (q2

1,0)F (0,q
2
2 )/F (0,0)

Use scalar QED dressed with form factors for σ (γ ∗γ ∗ → π+π −).
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Aside: π 0 contribution

Leading HLbL contributions to muon g − 2 are expected to come from π 0

exchange diagrams, which dominate at long distances.

+ +

Their contribution to the four-point function:

ΠE,π 0

µ1 µ2 µ3 µ4
(p4; p1,p2)

= −p1αp2βp3σp4τ


F12ϵµ1 µ2αβF34ϵµ3 µ4στ

(p1 + p2)2 + m2
π

+
F13ϵµ1 µ3ασF24ϵµ2 µ4βτ

(p1 + p3)2 + m2
π

+
F14ϵµ1 µ4ατF23ϵµ2 µ3βσ

(p2 + p3)2 + m2
π


 ,

where p3 = −(p1 + p2 + p4) and Fij = F (p2
i ,p

2
j ).

This is consistent with the dispersion relation using σ (γ ∗γ ∗ → π 0).
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MTT : dependence on ν and Q2
2
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For scalar, tensor mesons there
is no data from expt; we use

F (q2,0) = F (0,q2) =
1

1 − q2/Λ2

with Λ set by hand to 1.6 GeV

Changing Λ by ±0.4 GeV
adjusts curves by up to ±50%.

Points: la�ice data.
Curves: dispersion relation + model for cross section.
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MTT : dependence on ν and mπ
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Points: la�ice data.
Curves: dispersion relation +

model for cross section.
In increasing order:
I π 0

I π 0 + η′

I full model
I full model + high-energy
σ (γγ → hadrons) at
physical mπ
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General kinematics case

To study o�-forward kinematics, we fix p2
1 = p2

2 = (p1 + p2)
2 = 0.33 GeV2

and consider contractions of ΠE
µ1 µ2 µ3 µ4

(p4; p1,p2) with two di�erent tensors:

1. δµ1 µ2δµ3 µ4 yields π 0 contribution

− 2
(
(p1 · p2) (p3 · p4) − (p1 · p4) (p2 · p3)

(p1 + p3)2 + m2
π

F (p2
1,p

2
3)F (p2

2,p
2
4)

+
(p1 · p2) (p3 · p4) − (p1 · p3) (p2 · p4)

(p2 + p3)2 + m2
π

F (p2
1,p

2
4)F (p2

2,p
2
3)

)
,

where F (0,0) = −1/(4π 2Fπ ) (Wess-Zumino-Wi�en) and we use vector
meson dominance for dependence on p2.

2. δµ1 µ2δµ3 µ4 + δµ1 µ3δµ2 µ4 + δµ1 µ4δµ2 µ3 , which is totally symmetric and
thus has no π 0 contribution.

We also fix p2
3 = p2

4 to two di�erent values and plot versus the one
remaining kinematic variable.
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O�-forward kinematics
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µ
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4 mπ = 324 MeV, P 2
1 = P 2

2 = (P1 + P2)2 = 0.33 GeV2

(λ, P 2
3 = P 2

4 [GeV2])

(0, 0.82)

(1, 0.82)

(0, 0.49)

(1, 0.49)

Squares: contraction without π 0 contribution.
Circles: contraction containing π 0 contribution.
Curves: π 0 contribution assuming model for F (p2

1,p
2
2).
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Strategy for muon g − 2: kernel

In Euclidean space, give muon momentum p = imϵ̂ , ϵ̂2 = 1.
Apply QED Feynman rules and isolate F2 (0); obtain

aHLbL
µ =

∫
d4x d4y L[ρ,σ ];µνλ (ϵ̂ ,x ,y )iΠ̂ρ;µνλσ (x ,y ),

where Π̂ρ;µνλσ (x1,x2) =

∫
d4x4 (ix4)ρ

〈
Jµ (x1)Jν (x2)Jλ (0)Jσ (x4)

〉
.

The integrand for aµ is a scalar function of 5 invariants: x2, y2, x · y , x · ϵ ,
and y · ϵ , so 3 of the 8 dimensions in the integral are trivial.
Five dimensions is still too many. Result is independent of ϵ̂ , so we can
eliminate it by averaging in the integrand:

L (ϵ̂ ,x ,y ) → L̄ (x ,y ) ≡
〈
L (ϵ̂ ,x ,y )

〉
ϵ̂

Then the integrand depends only on x2, y2, and x · y .
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Strategy for muon g − 2: la�ice

aHLbL
µ =

∫
d4x

∫
d4y d4z L̄[ρ,σ ];µνλ (x ,y ) (−z )ρ

〈
Jµ (x )Jν (y )Jλ (0)Jσ (z )

〉
= 2π 2

∫ ∞

0
x3dx

∫
d4y d4z L̄[ρ,σ ];µνλ (x ,y ) (−z )ρ

〈
Jµ (x )Jν (y )Jλ (0)Jσ (z )

〉
.

Evaluate the y and z integrals in the following way:

1. Fix local currents at the origin and x , and compute point-source
propagators.

2. Evaluate the integral over z using sequential propagators.

3. Contract with L̄[ρ,σ ];µνλ (x ,y ) and sum over y .

The above has similar cost to evaluating sca�ering amplitudes at fixed p1,p2.
Do this several times to perform the one-dimensional integral over |x |.
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Summary and outlook

I The contribution from fully-connected four-point function to the
light-by-light sca�ering amplitude can be e�iciently evaluated if two of
the three momenta are fixed.

I Forward-sca�ering case is related to σ (γ ∗γ ∗ → hadrons); la�ice is
consistent with phenomenology, within the la�er’s large uncertainty.

I For typical Euclidean kinematics the π 0 contribution is not dominant.
I A strategy is in place for computing the leading-order HLbL

contribution to the muon g − 2.
Work is ongoing to evaluate the kernel L̄[ρ,σ ];µνλ (x ,y ).

I Phenomenology indicates the π 0 contribution is dominant for g − 2;
reaching this regime (physical mπ , large volumes) may be challenging
on the la�ice.

I Results on the HLbL sca�ering amplitude were posted in
arXiv:1507.01577.
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