Direct calculation of hadronic light-by-light scattering

Jeremy Green

Nils Asmussen, Oleksii Gryniuk, Georg von Hippel, Harvey Meyer, Andreas Nyffeler, Vladimir Pascalutsa

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz
The 33rd International Symposium on Lattice Field Theory July 14-18, 2015

Outline

1. Introduction
2. Lattice four-point function
3. Light-by-light scattering amplitude
4. Strategy for $g-2$
5. Summary and outlook

Some of these results were posted in arXiv:1507.01577

The muon $g-2$

One of the most precise tests of the Standard Model

$$
a_{\mu} \equiv\left(\frac{g-2}{2}\right)_{\mu}= \begin{cases}116592080(63) \times 10^{-11} & \text { experiment } \\ 116591790(65) \times 10^{-11} & \text { theory }\end{cases}
$$

$\delta a_{\mu}=(290 \pm 90) \times 10^{-11}$, a 3σ deviation

- Fermilab 989 has goal to reduce experimental error by factor of 4
- Leading theory errors come from:

Hadronic vacuum polarization, which can be improved using $e^{+} e^{-} \rightarrow$ hadrons experiments
 (HLbL) scattering, which is not easily obtained from experiments

Light-by-light scattering

Before computing a_{μ}^{HLLL}, start by studying light-by-light scattering by itself.

This has much more information than just a_{μ}^{HLbL}. We can:

- Compare against phenomenology.
- Test models used to compute a_{μ}^{HLbL}.

Lattice four-point function

Directly compute four-point function of vector currents

- Use one local current $Z_{V} J_{\mu}^{l}$ at the source point.
- Use three conserved currents J_{μ}^{c}.

In position space:

$$
\begin{aligned}
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos }}\left(x_{1}, x_{2}, 0, x_{4}\right)=\langle & Z_{V} J_{\mu_{3}}^{l}(0)\left[j_{\mu_{1}}^{c}\left(x_{1}\right) J_{\mu_{2}}^{c}\left(x_{2}\right) J_{\mu_{4}}^{c}\left(x_{4}\right)\right. \\
& +\delta_{\mu_{1} \mu_{2}} \delta_{x_{1} x_{2}} T_{\mu_{1}}\left(x_{1}\right) J_{\mu_{4}}^{c}\left(x_{4}\right) \\
& +\delta_{\mu_{1} \mu_{4}} \delta_{x_{1} x_{4}} T_{\mu_{4}}\left(x_{4}\right) J_{\mu_{2}}^{c}\left(x_{2}\right) \\
& +\delta_{\mu_{2} \mu_{4}} \delta_{x_{2} x_{4}} T_{\mu_{4}}\left(x_{4}\right) J_{\mu_{1}}^{c}\left(x_{1}\right) \\
& \left.\left.+\delta_{\mu_{1} \mu_{4}} \delta_{\mu_{2} \mu_{4}} \delta_{x_{1} x_{4}} \delta_{x_{2} x_{4}} J_{\mu_{4}}^{c}\left(x_{4}\right)\right]\right\rangle,
\end{aligned}
$$

where $T_{\mu}(x)$ is a "tadpole" contact operator. This satisfies the conserved-current relations,

$$
\Delta_{\mu_{1}}^{x_{1}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos }}=\Delta_{\mu_{2}}^{x_{2}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos }}=\Delta_{\mu_{4}}^{x_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos }}=0
$$

Quark contractions

Compute only the fully-connected contractions, with fixed kernels summed over x_{1} and x_{2} :

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}^{\prime}}\left(x_{4} ; f_{1}, f_{2}\right)=\sum_{x_{1}, x_{2}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos }}\left(x_{1}, x_{2}, 0, x_{4}\right)
$$

Generically, need the following propagators:

- 1 point-source propagator from $x_{3}=0$

- 8 sequential propagators through x_{1}, for each μ_{1} and f_{1} or f_{1}^{*}
- 8 sequential propagators through x_{2}
- 32 double-sequential propagators through x_{1} and x_{2}, for each $\left(\mu_{1}, \mu_{2}\right)$ and $\left(f_{1}, f_{2}\right)$ or $\left(f_{1}^{*}, f_{2}^{*}\right)$

Kinematical setup

Obtain momentum-space Euclidean four-point function using plane waves:

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(p_{4} ; p_{1}, p_{2}\right)=\left.\sum_{x_{4}} e^{-i p_{4} \cdot x_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}^{\prime}}\left(x_{4} ; f_{1}, f_{2}\right)\right|_{f_{a}(x)=e^{-i p_{a} \cdot x}}
$$

Thus, we can efficiently fix $p_{1,2}$ and choose arbitrary p_{4}.

- Full 4-point tensor is very complicated: it can be decomposed into 41 scalar functions of 6 kinematic invariants.
- Forward case is simpler:

$$
Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4} .
$$

Then there are 8 scalar functions that depend on 3 kinematic invariants.

Lattice ensembles

Use CLS ensembles: $N_{f}=2 O(a)$-improved Wilson, with $a=0.063 \mathrm{fm}$.

1. $m_{\pi}=451 \mathrm{MeV}, 64 \times 32^{3}$
2. $m_{\pi}=324 \mathrm{MeV}, 96 \times 48^{3}$
3. $m_{\pi}=277 \mathrm{MeV}, 96 \times 48^{3}$

Keep only u and d quarks in the electromagnetic current, i.e.,

$$
J_{\mu}^{l}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d .
$$

Study forward case with a few different Q_{1} and also more general kinematics.

Forward LbL amplitude

Take the amplitude for forward scattering of transversely polarized virtual photons,

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)=\frac{e^{4}}{4} R_{\mu_{1} \mu_{2}} R_{\mu_{3} \mu_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right)
$$

where $v=-Q_{1} \cdot Q_{2}$ and $R_{\mu v}$ projects onto the plane orthogonal to Q_{1}, Q_{2}.

A subtracted dispersion relation at fixed spacelike Q_{1}^{2}, Q_{2}^{2} relates this to the $\gamma^{*} \gamma^{*} \rightarrow$ hadrons cross sections $\sigma_{0,2}:$
$\mathcal{M}_{T T}\left(q_{1}^{2}, q_{2}^{2}, v\right)-\mathcal{M}_{T T}\left(q_{1}^{2}, q_{2}^{2}, 0\right)=\frac{2 v^{2}}{\pi} \int_{v_{0}}^{\infty} d v^{\prime} \frac{\sqrt{v^{\prime 2}-q_{1}^{2} q_{2}^{2}}}{v^{\prime}\left(v^{\prime 2}-v^{2}-i \epsilon\right)}\left[\sigma_{0}\left(v^{\prime}\right)+\sigma_{2}\left(v^{\prime}\right)\right]$
This is model-independent and will allow for systematically improvable comparisons between lattice and experiment.

Model for $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons $)$

(V. Pascalutsa, V. Pauk, M. Vanderhaeghen, Phys. Rev. D 85 (2012) 116001) Include single mesons and $\pi^{+} \pi^{-}$final states:

$$
\sigma_{0}+\sigma_{2}=\sum_{\mathcal{M}} \sigma\left(\gamma^{*} \gamma^{*} \rightarrow M\right)+\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{+} \pi^{-}\right)
$$

Mesons:

- pseudoscalar $\left(\pi^{0}, \eta^{\prime}\right)$
- scalar $\left(a_{0}, f_{0}\right)$
- axial vector $\left(f_{1}\right)$
- tensor $\left(a_{2}, f_{2}\right)$
$\sigma\left(\gamma^{*} \gamma^{*} \rightarrow M\right)$ depends on the meson's:
- mass m and width Γ
- two-photon decay width $\Gamma_{\gamma \gamma}$
- two-photon transition form factor $F\left(q_{1}^{2}, q_{2}^{2}\right)$
assume $F\left(q_{1}^{2}, q_{2}^{2}\right)=F\left(q_{1}^{2}, 0\right) F\left(0, q_{2}^{2}\right) / F(0,0)$
Use scalar QED dressed with form factors for $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{+} \pi^{-}\right)$.

Aside: π^{0} contribution

Leading HLbL contributions to muon $g-2$ are expected to come from π^{0} exchange diagrams, which dominate at long distances.

Their contribution to the four-point function:

$$
\begin{aligned}
& \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E, \mu_{0}^{0}}\left(p_{4} ; p_{1}, p_{2}\right) \\
& =-p_{1 \alpha} p_{2 \beta} p_{3 \sigma} p_{4 \tau}\left(\frac{\mathcal{F}_{12} \epsilon_{\mu_{1} \mu_{2} \alpha \beta} \mathcal{F}_{34} \epsilon_{\mu_{3} \mu_{4} \sigma \tau}}{\left(p_{1}+p_{2}\right)^{2}+m_{\pi}^{2}}+\frac{\mathcal{F}_{13} \epsilon_{\mu_{1} \mu_{3} \alpha \sigma} \mathcal{F}_{24} \epsilon_{\mu_{2} \mu_{4} \beta \tau}}{\left(p_{1}+p_{3}\right)^{2}+m_{\pi}^{2}}\right. \\
& \left.\quad+\frac{\mathcal{F}_{14} \epsilon_{\mu_{1} \mu_{4} \alpha \tau} \mathcal{F}_{23} \epsilon_{\mu_{2} \mu_{3} \beta \sigma}}{\left(p_{2}+p_{3}\right)^{2}+m_{\pi}^{2}}\right)
\end{aligned}
$$

where $p_{3}=-\left(p_{1}+p_{2}+p_{4}\right)$ and $\mathcal{F}_{i j}=\mathcal{F}\left(p_{i}^{2}, p_{j}^{2}\right)$.
This is consistent with the dispersion relation using $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{0}\right)$.

$\mathcal{M}_{T T}:$ dependence on v and Q_{2}^{2}

For scalar, tensor mesons there is no data from expt; we use

$$
F\left(q^{2}, 0\right)=F\left(0, q^{2}\right)=\frac{1}{1-q^{2} / \Lambda^{2}}
$$

with Λ set by hand to 1.6 GeV
Changing Λ by $\pm 0.4 \mathrm{GeV}$ adjusts curves by up to $\pm 50 \%$.

Points: lattice data.
Curves: dispersion relation + model for cross section.

$\mathcal{M}_{T T}:$ dependence on v and m_{π}

Points: lattice data.
Curves: dispersion relation + model for cross section. In increasing order:

- π^{0}
- $\pi^{0}+\eta^{\prime}$
- full model
- full model + high-energy $\sigma(\gamma \gamma \rightarrow$ hadrons $)$ at physical m_{π}

General kinematics case

To study off-forward kinematics, we fix $p_{1}^{2}=p_{2}^{2}=\left(p_{1}+p_{2}\right)^{2}=0.33 \mathrm{GeV}^{2}$ and consider contractions of $\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(p_{4} ; p_{1}, p_{2}\right)$ with two different tensors:

1. $\delta_{\mu_{1} \mu_{2}} \delta_{\mu_{3} \mu_{4}}$ yields π^{0} contribution

$$
\begin{aligned}
-2 & \left(\frac{\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)-\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)}{\left(p_{1}+p_{3}\right)^{2}+m_{\pi}^{2}} \mathcal{F}\left(p_{1}^{2}, p_{3}^{2}\right) \mathcal{F}\left(p_{2}^{2}, p_{4}^{2}\right)\right. \\
& \left.+\frac{\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)-\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)}{\left(p_{2}+p_{3}\right)^{2}+m_{\pi}^{2}} \mathcal{F}\left(p_{1}^{2}, p_{4}^{2}\right) \mathcal{F}\left(p_{2}^{2}, p_{3}^{2}\right)\right),
\end{aligned}
$$

where $\mathcal{F}(0,0)=-1 /\left(4 \pi^{2} F_{\pi}\right)$ (Wess-Zumino-Witten) and we use vector meson dominance for dependence on p^{2}.
2. $\delta_{\mu_{1} \mu_{2}} \delta_{\mu_{3} \mu_{4}}+\delta_{\mu_{1} \mu_{3}} \delta_{\mu_{2} \mu_{4}}+\delta_{\mu_{1} \mu_{4}} \delta_{\mu_{2} \mu_{3}}$, which is totally symmetric and thus has no π^{0} contribution.
We also fix $p_{3}^{2}=p_{4}^{2}$ to two different values and plot versus the one remaining kinematic variable.

Off-forward kinematics

Squares: contraction without π^{0} contribution.
Circles: contraction containing π^{0} contribution.
Curves: π^{0} contribution assuming model for $\mathcal{F}\left(p_{1}^{2}, p_{2}^{2}\right)$.

Strategy for muon $g-2$: kernel

In Euclidean space, give muon momentum $p=\operatorname{im} \hat{\epsilon}, \hat{\epsilon}^{2}=1$.
Apply QED Feynman rules and isolate $F_{2}(0)$; obtain

$$
a_{\mu}^{\mathrm{HLLL}}=\int d^{4} x d^{4} y \mathcal{L}_{[\rho, \sigma] ; \mu \nu \lambda}(\hat{\epsilon}, x, y) i \hat{\Pi}_{\rho ; \mu \nu \lambda \sigma}(x, y),
$$

where

$$
\hat{\Pi}_{\rho ; \mu \nu \lambda \sigma}\left(x_{1}, x_{2}\right)=\int d^{4} x_{4}\left(i x_{4}\right)_{\rho}\left\langle J_{\mu}\left(x_{1}\right) J_{\nu}\left(x_{2}\right) J_{\lambda}(0) J_{\sigma}\left(x_{4}\right)\right\rangle .
$$

The integrand for a_{μ} is a scalar function of 5 invariants: $x^{2}, y^{2}, x \cdot y, x \cdot \epsilon$, and $y \cdot \epsilon$, so 3 of the 8 dimensions in the integral are trivial.
Five dimensions is still too many. Result is independent of $\hat{\epsilon}$, so we can eliminate it by averaging in the integrand:

$$
\mathcal{L}(\hat{\epsilon}, x, y) \rightarrow \overline{\mathcal{L}}(x, y) \equiv\langle\mathcal{L}(\hat{\epsilon}, x, y)\rangle_{\hat{\epsilon}}
$$

Then the integrand depends only on x^{2}, y^{2}, and $x \cdot y$.

Strategy for muon $g-2$: lattice

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}} & =\int d^{4} x \int d^{4} y d^{4} z \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)(-z)_{\rho}\left\langle J_{\mu}(x) J_{v}(y) J_{\lambda}(0) J_{\sigma}(z)\right\rangle \\
& =2 \pi^{2} \int_{0}^{\infty} x^{3} d x \int d^{4} y d^{4} z \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu v \lambda}(x, y)(-z)_{\rho}\left\langle J_{\mu}(x) J_{v}(y) J_{\lambda}(0) J_{\sigma}(z)\right\rangle .
\end{aligned}
$$

Evaluate the y and z integrals in the following way:

1. Fix local currents at the origin and x, and compute point-source propagators.
2. Evaluate the integral over z using sequential propagators.
3. Contract with $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ and sum over y.

The above has similar cost to evaluating scattering amplitudes at fixed p_{1}, p_{2}.
Do this several times to perform the one-dimensional integral over $|x|$.

Summary and outlook

- The contribution from fully-connected four-point function to the light-by-light scattering amplitude can be efficiently evaluated if two of the three momenta are fixed.
- Forward-scattering case is related to $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons $)$; lattice is consistent with phenomenology, within the latter's large uncertainty.
- For typical Euclidean kinematics the π^{0} contribution is not dominant.
- A strategy is in place for computing the leading-order HLbL contribution to the muon $g-2$. Work is ongoing to evaluate the kernel $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$.
- Phenomenology indicates the π^{0} contribution is dominant for $g-2$; reaching this regime (physical m_{π}, large volumes) may be challenging on the lattice.
- Results on the HLbL scattering amplitude were posted in arXiv:1507.01577.

