Friedrich-Schiller-Universität Jena

Critical Flavour Number of the Thirring Model in Three Dimensions

Daniel Schmidt Björn Wellegehausen Andreas Wipf

Kobe, July 18, 2015

Research Training Group (1523/2) Quantum and Gravitational Fields

Research Training Group Quantum and Gravitational Field

1 Introduction to the Thirring Model

- 2 Current Approach
- 3 Results and Current Work

QFT with N_f flavours of massless fermions with current interaction \rightarrow special case of a four-fermi theory

Euclidean Lagrangian

$$\mathcal{L} = \bar{\psi}_{j} i \tilde{\partial} \psi_{j} - \frac{g^{2}}{2N_{f}} \left(\bar{\psi}_{j} \gamma^{\mu} \psi_{j} \right)^{2} \qquad j = 1, \dots, N_{f}$$

History

- Introduced by Walter Thirring in 1958 as soluble QFT in 2D.
- Renewed interest in 3D model due to similarity to QED₃ and possible applications in superconductors, graphene, ...

Massless, reducible Thirring model in 3D

- 3-dimensional euclidean spacetime
- 4-dimensional reducible representation of Clifford algebra (4-component spinors)

Massless, reducible Thirring model in 3D

- 3-dimensional euclidean spacetime
- 4-dimensional reducible representation of Clifford algebra (4-component spinors)

Hubbard-Stratonovich transformation

Introduction of auxiliary vector field V_{μ} to eliminate quartic term.

$$\mathcal{L} = \bar{\psi}_{j} i \gamma^{\mu} \left(\vartheta_{\mu} - i V_{\mu} \right) \psi_{j} + \lambda_{\mathsf{Th}} V^{\mu} V_{\mu}$$

with $\lambda_{Th}=\frac{N_f}{2g^2}.$ Integration $\int {\cal D} V_{\mu} \; e^{-S}$ leads back to original action.

Symmetries

- chiral symmetry, generated by $\{1, \gamma_4, \gamma_5, i\gamma_4\gamma_5\}$
- flavour symmetry

together: $U\left(N_{f},N_{f}\right)$, can be spontaneously broken to $U\left(N_{f}\right)\otimes U\left(N_{f}\right)$

Chiral symmetry breaking

" $N_f = 0.5$ " irreducible representation for $N_f = 1$ corresponds to Gross-Neveu model with chiral symmetry breaking

 $N_f \rightarrow \infty~$ no chiral symmetry breaking

 \Rightarrow there is a N_{f}^{cr} where chiral behaviour changes

Results for N_f^{cr} from Schwinger-Dyson equations, $\frac{1}{N_f}$ -expansion, functional renormalization group, Lattice simulation with staggered fermions:

First result from Kim & Kim (1996), further publications from Del Debbio, Hands et al. from 1996-1999 and 2007.

fermions staggered with m > 0 (no full chiral symmetry!) algorithms Hybrid Monte Carlo (N_f = 2, 4, 6) Hybrid Molecular Dynamics (N_f real valued) measurements fits to "equation of state" relating $\langle \bar{\psi} \psi \rangle$ to m First result from Kim & Kim (1996), further publications from Del Debbio, Hands et al. from 1996-1999 and 2007.

fermions staggered with m > 0 (no full chiral symmetry!)

algorithms Hybrid Monte Carlo ($N_f = 2, 4, 6$)

Hybrid Molecular Dynamics (N_f real valued)

measurements fits to "equation of state" relating $\langle \bar{\psi}\psi
angle$ to m

Coupling constant renormalization in $\frac{1}{N_{\ell}}$ -expansion

First result from Kim & Kim (1996), further publications from Del Debbio, Hands et al. from 1996-1999 and 2007.

fermions staggered with m > 0 (no full chiral symmetry!)

algorithms Hybrid Monte Carlo ($N_f = 2, 4, 6$)

Hybrid Molecular Dynamics (N_f real valued)

measurements fits to "equation of state" relating $\langle \bar{\psi}\psi \rangle$ to m

Coupling constant renormalization in $\frac{1}{N_{\ell}}$ -expansion

unphysical phase: $g_R^2 < 0$ for bare coupling $g_{lim}^{-2} < J(m) \xrightarrow[m \to 0]{} \frac{2}{3}$

Daniel Schmidt (University of Jena)

1 Introduction to the Thirring Model

2 Current Approach

3 Results and Current Work

fermions use derivative with exact chiral symmetry algorithm rational Hybrid Monte Carlo \rightarrow non-integer N_f possible

SLAC derivative

$$\begin{split} \bar{\psi} \partial \!\!\!/ \psi &\to \sum_{x,y=1}^{L} \bar{\psi}_{x} \partial_{xy}^{\text{SLAC}} \psi_{y} \quad \text{with} \\ \partial_{xy}^{\text{SLAC}} &= \begin{cases} 0 & x = y \\ \frac{\pi}{L} (-1)^{x-y} \frac{1}{\sin\left(\frac{\pi}{L} (x-y)\right)} & x \neq y \end{cases} \end{split}$$

- not local: needs all grid points in a line
- in momentum space: multiplication by $i\gamma^{\mu}p_{\mu}$

Technical problem

Chiral condensate is always zero due to exact chiral symmetry and integration over fermions.

1 Include new action preserving U(1) symmetry

$$1 = \lim_{g_g \rightarrow 0} e^{-S_g} = \lim_{g_g \rightarrow 0} e^{\frac{g_g}{2N_f} \left(\Sigma^2 - \Pi^2\right)}$$

with $\Sigma=\frac{1}{V}\sum_{x}\bar{\psi}_{x}\psi_{x}$ and $\Pi=\frac{1}{V}\sum_{x}\bar{\psi}_{x}\gamma_{5}\psi_{x}.$

2 Introduce global fields σ , $\hat{\pi}$ via Hubbard-Stratonovich transformation:

$$e^{-S_{g}} = \int\limits_{-\infty}^{\infty} d\sigma \int\limits_{-\infty}^{\infty} d\hat{\pi} \frac{N_{f}}{2\pi g_{g}} e^{-\frac{N_{f}}{2g_{g}} \left(\sigma^{2} + \hat{\pi}^{2}\right) + \Sigma \sigma + i\Pi\hat{\pi}}$$

Coupling to a Global Field

3 Rescale fields by \sqrt{V} , define $\lambda_g \coloneqq \frac{VN_f}{2g_g}$. Resulting action:

$$e^{-S_{g}} = \int_{-\infty}^{\infty} d\sigma \int_{-\infty}^{\infty} d\hat{\pi} \frac{\lambda_{g}}{\pi} e^{-\lambda_{g} \left(\sigma^{2} + \hat{\pi}^{2}\right) + \sqrt{V}(\Sigma \sigma + i\Pi \hat{\pi})}$$

Include global fields into Dirac operator:

$$\bar{\psi}D\psi = \bar{\psi}\left(i\partial \!\!\!/ + V - \frac{1}{\sqrt{V}}\left(\sigma + i\gamma_5\pi\right)\right)\psi$$

5 Full action:

$$\begin{split} S &= \sum_x \bar{\psi} D \psi + \lambda_{\mathsf{Th}} \sum_x V_\mu V^\mu + \lambda_g \left(\sigma^2 + \hat{\pi}^2 \right) \\ Z &= \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} V_\mu \mathsf{d} \sigma \mathsf{d} \hat{\pi} \; \mathsf{e}^{-S} \end{split}$$

1 Introduction to the Thirring Model

2 Current Approach

3 Results and Current Work

Local histograms of chiral condensate for lattice size 12x11x11, $\lambda_g = 0.5$.

Local histograms of chiral condensate for lattice size 12x11x11, $\lambda_g = 0.5$.

Local histograms of chiral condensate for lattice size 12x11x11, $\lambda_g = 0.5$.

Daniel Schmidt (University of Jena)

Critical Flavour Number of Thirring Model

Chiral condensate dependence on N_f for lattice size 12x11x11, $\lambda_g=0.5.$

Critical couplings for both transitions depending on N_f , for $\lambda_g = 0.5$.

Critical couplings for both transitions depending on N_f , for $\lambda_g = 0.5$.

Increasing global coupling for $N_{\rm f}=2\,$

- Artefact transition has $\frac{\lambda_{Th}}{N_{\ell}}$ roughly constant.
- Physical transition moves to smaller coupling.

Daniel Schmidt (University of Jena)

Phase transitions get closer for increasing $\lambda_g \Rightarrow N_f^{cr}$ gets smaller.

Intersections of the lines of physical and artefact transition, depending on λ_g :

Fit to data with $ax^{-b} + c$ gives $N_f^{cr}(\lambda_g \to \infty) = 2.05 \pm 0.05$.

Can we define a continuum limit? At which transition?

- Peaks in susceptibility agree with transitions in chiral condensate.
- Current work: scaling of susceptibility with the lattice volume.

Example for $N_f = 1$, $\lambda_g = 0.5$:

- The Thirring model shows chiral symmetry breaking for $N_f < N_f^{cr}$, for which there are many different predictions.
- Lattice formulation with SLAC fermions has the same chiral symmetry as the continuum model.
- Coupling to a global model allows direct measurement of chiral condensate while preserving a U(1)-symmetry.
- There is a second phase transition, where the model might get unphysical.
- When recovering the Thirring model, the chiral symmetry breaking transition merges with the second one for $N_f > 2$ and probably not for $N_f \leqslant 2$.

Thank you for your attention!