VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	00	0000	000	00

Testing the Witten-Veneziano Formula on the Lattice

K. Cichy^{a,b,c}, E. Garcia-Ramos^d, K. Jansen^{b,d}, K. Ottnad^e, C. Urbach^e

for ETM Collaboration

^a Goethe-Universität, Institut für Theoretische Physik, Frankfurt a.M., Germany

^b NIC, DESY Zeuthen, Germany

^c Adam Mickiewicz University, Faculty of Physics, Poland

^d Humboldt Universität zu Berlin, Germany

^e Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Germany

LATTICE conference in Kobe on July 16, 2015

VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	00	0000	000	00
Veneziene M/i	tton formula			

Veneziano-Witten formula

The light meson spectrum exhibits a peculiar pattern:

- π^{\pm} , π^{0} , K^{\pm} , K^{0} , \bar{K}^{0} , η ("octet mesons") have masses from \sim 135 ... 548 MeV
- In addition there is a "flavor-singlet", the η'
- If $m_u = m_d = m_s$ all 9 mesons should have the same mass

Surprisingly, $M_{\eta'} \approx 958~{
m MeV} \gg M_{octet}$

Solution to this puzzle:

• Large $M_{\eta'}$ is caused by the QCD vacuum structure and the $U(1)_A$ anomaly.

Weinberg (1975), Belavin et al. (1975), t'Hooft (1976), Witten (1979), Veneziano (1979)

The U(1) axial current is anomalously broken, i.e. even for $m_f = 0$:

$$\partial_{\mu}A^{0}_{\mu} = \frac{N_{f}g^{2}}{32\pi^{2}}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu} \neq 0$$

Adler (1969), Jackiw and Bell (1969)

- However, contribution to $M_{\eta'}$ vanishes to all orders in perturbation theory
- Instantons with non-trivial topology provide non-perturbative explanation

Belavin et al. (1975) , t'Hooft (1976)

VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	00	0000	000	00

Assume we can compute masses (decay constants, mixing parameters) for π , K, η , η'

...how can one establish a relation to the $U(1)_A$ anomaly?

• For large N_c , $g^2 N_c = const$, $N_f = const$ and $m_q = 0$ one can derive the Veneziano-Witten formula:

$$\frac{4N_f}{f_0^2}\chi_{\infty} = M_{\eta'}^2 + \mathcal{O}(1/N_c^2)$$

Witten (1979)

- χ_{∞} is the susceptibility in pure Yang-Mills theory
- $f_0 \neq f_{\pi}$ is the singlet decay constant
- The flavor-singlet η' is **not** a Goldstone boson in the chiral limit
- Including $m_q \neq 0$ effects one has

$$rac{4N_f}{f_0^2}\chi_{\infty} = M_{\eta'}^2 + M_{\eta}^2 - 2M_K^2$$

Veneziano (1979)

• From a modern perspective the formula is obtained in χPT at LO for a combined power counting scheme

$$\mathcal{O}(p^2) \sim \mathcal{O}(m_q) \sim \mathcal{O}(1/N_c)$$

VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	00	0000	000	00

The Veneziano-Witten formula

$$\chi_{\infty} = \frac{f_0^2}{4N_f} (M_{\eta'}^2 + M_{\eta}^2 - 2M_K^2)$$

connects:

- Topological susceptibility χ_{∞} in pure Yang-Mills gauge theory
- Meson masses M_K , M_η , $N_{\eta'}$
- Singlet decay constant $f_0 \leftarrow$ main focus of this talk; need to look into η, η' -mixing!

Calculate all these quantities (for $N_c = 3$) using:

- Dedicated simulations in the quenched setup for χ_∞
- $N_f = 2 + 1 + 1$ WtmLQCD configurations provided by ETMC JHEP 0108:058 (2001), Nucl. Phys. Proc. Suppl.1258 (2004), JHEP 1006:111 (2010)

Can we (successfully) test the VW formula on the lattice?

VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	•0	0000	000	00

Quenched computation of χ_∞

Can compute χ_∞ from (stochastically estimated) density chains

$$\chi_t = m_1 \cdot ... m_5 \cdot a^{16} \sum_{x_1, ..., x_4} \langle P_{31}(x_1) S_{12}(x_2) S_{23}(x_3) \times P_{54}(x_4) S_{45}(0) \rangle_c$$

JHEP 0903:013 (2009)

where S_{ij} , P_{ij} denote scalar and pseudoscalar densities, respectively.

 \rightarrow Theoretical sound definition; needs only multiplicative renormalization factors

VW–formula 000	Quenched χ_∞ and masses ${}_{\odot} \bullet$	$\eta, \eta' - Mixing$	Decay constants 000	Results 00
Masses				

- M_K has been computed in same study
- Requires only connected diagrams \Rightarrow tiny errors; irrelevant to overall error budget

<u>Remark</u>: Fermionic quantities are correlated on each ensemble (e.g. M_{η} , $M_{\eta'}$)

VW–formula	Quenched χ_∞ and masses 00	η,η' –Mixing	Decay constants	Results
000		$\bullet \circ \circ \circ$	000	00
η, η' –Mixing				

Decay constants $f_{\rm P}^i$ are defined from axial-vector matrix elements (amplitudes)

$$\langle 0 | A^{i}_{\mu} | P(\mathbf{p}) \rangle = i f^{i}_{P} \mathbf{p}_{\mu}, \qquad P = \eta, \eta',$$

On the lattice: quark flavor basis (i=l,s) is "natural" choice

$$A^{\prime}_{\mu}=rac{1}{\sqrt{2}}(ar{u}\gamma_{\mu}\gamma_{5}u+ar{d}\gamma_{\mu}\gamma_{5}d)\,,\qquad A^{s}_{\mu}=ar{s}\gamma_{\mu}\gamma_{5}s\,.$$

 η and η' are not flavor eigenstates; most general parametrization:

$$\begin{pmatrix} f_{\eta}^{l} & f_{\eta}^{s} \\ f_{\eta'}^{l} & f_{\eta'}^{s} \end{pmatrix} = \begin{pmatrix} f_{l}\cos\phi_{l} & -f_{s}\sin\phi_{s} \\ f_{l}\sin\phi_{l} & f_{s}\cos\phi_{s} \end{pmatrix}$$

From χ PT one expects $|\phi_l - \phi_s|$ to be small, i.e. $\frac{|\phi_l - \phi_s|}{|\phi_l + \phi_s|} \ll 1$, $\phi \approx \phi_l \approx \phi_s$

Confirmed in previous lattice study

Phys.Rev.Lett. 111 (2013) 18, 181602

Unfortunately, the axial vector turned out to be too noisy to determine $f_{l,s}$ or $\phi / \phi_{l,s}$ directly

VW–formula	Quenched χ_∞ and masses 00	η,η' –Mixing	Decay constants	Results
000		$\circ ullet \circ \circ$	000	00
Pseudoscalar	amplitudes			

Consider pseudoscalar matrix element instead of axial vector

$$h_{\mathrm{P}}^{i} = 2m_{i} < 0|P^{i}|\mathrm{P}>, \quad \mathrm{P} = \eta, \eta^{\prime},$$

which can be related to axial vector via the **anomaly equation** using χ PT:

$$\begin{pmatrix} h_{\eta}^{l} & h_{\eta}^{s} \\ h_{\eta'}^{l} & h_{\eta'}^{s} \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \operatorname{diag} \left(f_{l} M_{PS}^{2}, f_{s} \left(2M_{K}^{2} - M_{PS}^{2} \right) \right) \,.$$

Phys.Rev. D58 (1998) 114006, Phys.Lett. B449 (1999) 339-346

 \rightarrow Residual χ PT-dependence compared to axial-vector approach

However, Veneziano-Witten formula is only LO χ PT as well ...

VW–formula	Quenched χ_∞ and masses 00	η,η' -Mixing	Decay constants	Results
000		$\circ\circ ullet \circ$	000	00
Definition o	f fo			

 f_0 is defined in different basis (octet-singlet basis):

$$egin{aligned} &\mathcal{A}^0_\mu = rac{1}{\sqrt{6}} ig(ar{u} \gamma_\mu \gamma_5 u + ar{d} \gamma_\mu \gamma_5 d + ar{s} \gamma_\mu \gamma_5 s ig) \,, \ &\mathcal{A}^8_\mu = rac{1}{\sqrt{3}} ig(ar{u} \gamma_\mu \gamma_5 u + ar{d} \gamma_\mu \gamma_5 d - 2ar{s} \gamma_\mu \gamma_5 s ig) \,. \end{aligned}$$

Parametrization similar to quark flavor basis:

$$\begin{pmatrix} f_{\eta}^{8} & f_{\eta}^{0} \\ f_{\eta'}^{8} & f_{\eta'}^{0} \end{pmatrix} = \begin{pmatrix} f_{8}\cos\phi_{8} & -f_{0}\sin\phi_{0} \\ f_{8}\sin\phi_{8} & f_{0}\cos\phi_{0} \end{pmatrix}$$

• Again, $f_{0,8}$ and $f_{l,s}$ can be related by continuum χ PT to the given order, e.g.

$$\begin{split} f_0^2 &= -7/6f_\pi^2 + 2/3f_K^2 + 3/2f_l^2 \,, \qquad (D1) \\ f_0^2 &= +1/3f_\pi^2 - 4/3f_K^2 + f_l^2 + f_s^2 \,, \qquad (D2) \\ f_0^2 &= +8/3f_\pi^2 - 16/3f_K^2 + 3f_s^2 \,, \qquad (D3) \end{split}$$

 \rightarrow Not unambiguous; they will have different systematics

VW–formula	Quenched χ_∞ and masses	η, η' -Mixing	Decay constants	Results
000	00	0000	000	00

Technical aside: η, η' in WtmLQCD

We work in the Wilson twisted mass $N_f = 2 + 1 + 1$ (unitary) setup:

In the physical basis 2 γ-combinations (iγ₅, iγ₀γ₅) available; consider only iγ₅:

phys basis:
$$\eta_{I}^{phys} = \frac{1}{\sqrt{2}} \bar{\psi}_{I} i \gamma_{5} \psi_{I}$$
, $\eta_{c,s}^{phys} = \bar{\psi}_{h} \left(\frac{1 \pm \tau^{3}}{2} i \gamma_{5} \right) \psi_{h} = \begin{cases} \bar{c} i \gamma_{5} c \\ \bar{s} i \gamma_{5} s \end{cases}$,
tm basis: $\eta_{I}^{tm} = \frac{1}{\sqrt{2}} \bar{\chi}_{I} \left(-\tau^{3} \right) \chi_{I}$ $\eta_{c,s}^{tm} = \frac{1}{2} \bar{\chi}_{h} \left(-\tau^{1} \pm i \gamma_{5} \tau^{3} \right) \chi_{h}$.
 \Rightarrow Heavy operators are a sum of scalars and pseudoscalars

Considering renormalization we have (up to an irrelevant global factor)

$$\begin{aligned} \eta_{c,renormalized}^{tm} &= Z\left(\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s\right)/2 + \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right)/2 \\ \eta_{s,renormalized}^{tm} &= Z\left(\bar{\chi}_s i \gamma_5 \chi_s - \bar{\chi}_c i \gamma_5 \chi_c\right)/2 - \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right)/2 \end{aligned}$$

• Need ratio $Z = \frac{Z_P}{Z_S}$ of (non-singlet!) scalar and pseudoscalar renormalization constants

• Use Z from two methods (M1 and M2) \Rightarrow different $\mathcal{O}(a^2)$ -effects for observables _{Nucl.Phys. B887 (2014) 19-68}

<u>Remark</u>: M_{η} , $M_{\eta'}$ and ϕ do NOT depend on Z, but ONLY f_l , f_s (and hence f_0)

VW–formula	Quenched χ_∞ and masses 00	η, η' -Mixing	Decay constants	Results
000		0000	●○○	00
Decay constar	$f_{l} = f_{l}$			

- f_l only mildly affected by choice of $Z = Z_P/Z_S$ (M1 left panel, M2 right panel)
- Non-linear $(r_0 M_{\rm PS})^2$ dependence
- Strange quark mass dependence unclear
- Mildly affected by lattice artifacts

Strongly affected by choice of Z (M1 left panel, M2 right panel)

- Sizable lattice artifacts and ms dependence for M1
- Similar effect observed for f_K, which is also required for f₀!

Z factor enters through operator mixing (\mathcal{P} and \mathcal{S}) for heavy quarks (f_l , f_s , f_k) and μ_s (f_K)

$$f_{\mathcal{K}} = (\mu_{l} + \mu_{s}) \frac{\langle 0|\tilde{\mathcal{P}}_{+,irral}^{+,irral}|\mathcal{K}\rangle}{M_{\mathcal{K}}^{2}}, \qquad \mu_{c,s} = \mu_{\sigma} \pm Z\mu_{\delta}$$

12/15

 f_0 from definition D1 and two choices of Z (M1 left panel, M2 right panel)

- Clearly affected by choice of Z (M1 left panel, M2 right panel)
- Visible strange quark mass dependence and non-linear $(r_0 M_{\rm PS})^2$ –dependence
- Unclear how to fit

 \Rightarrow Don't fit f_0 itself, but compute r.h.s of VW-formula first, i.e. $\frac{f_0^2}{4N_e}(M_{\eta'}^2 + M_{\eta}^2 - 2M_K^2)$

Plots show results for $r_0^4 \chi_\infty$ for the three definitions of f_0 :

- Lattice artifacts depend on choice of f₀ definition
- Lattice artifacts mostly (much) smaller than for f_0 itself
- m_s -dependence unclear; possibly difficult to disentangle from a^2 -effects
- *M*_{PS}-dependence small
- Relative stat. errors differ slightly for different definitions of f₀
- Const. fit does not describe the data well in some cases ($\chi^2/dof = 1.7...4.5$)

However, can try to estimate a systematic error from all six const. fits ...

- Comparison in physical units problematic because in general $r_0^{dyn}
 eq r_0^{\mathrm{YM}}$
- $r_0^{\rm YM}=0.5\,{
 m fm}$ and $r_0^{\rm dyn}=0.474(14)\,{
 m fm}$ yields good agreement
- Including linear terms in $(r_0 M_{\rm PS})^2$, $(r_0 M_K)^2$ and $(a/r_0)^2$ improves χ^2/dof ...

BUT:

Many terms compatible with zero; larger errors but similar result:

$$r_0^4 \chi_\infty^{
m dyn,lin} = 0.051(23)_{
m stat}$$

Nucl.Phys. B887 (2014) 19-68

• Left panel shows $r_0 f_K$ computed using $Z = Z_P/Z_S$ from method M1, right panel for M2

 Z factor enters through operator mixing (P and S) in the heavy quark sector and strange quark mass

$$f_{\mathcal{K}} = (\mu_{I} + \mu_{s}) \frac{\langle 0 | \mathcal{P}^{+, tm}_{neutoil} | \mathcal{K} \rangle}{\frac{M_{\mathcal{K}}^{2}}{M_{\mathcal{K}}^{2}}}, \qquad \mu_{c,s} = \mu_{\sigma} \pm Z \mu_{\delta}$$

Decay constant ratio – f_s/f_K

• Left panel shows f_s/f_K computed using Z from method M1, right panel for M2

- Z factor enters through:
 - Operator mixing in the heavy quark sector (f_s and f_K)
 - Strange quark mass (f_K)

 f_s and f_K show similar lattice artifacts and μ_s -dependence \rightarrow ratio cancels most effects

From left to right: definitions D1, D2, D3 for f_0

Upper row: Z from method M1; Lower row: Z from method M2

From left to right: definitions D1, D2, D3 for f_0

Upper row: Z from method M1; Lower row: Z from method M2

Results for fits including terms $\sim (r_0 M_{\rm PS})^2)$, $\sim (r_0 M_{\rm PS})^2$ and $\sim (a/r_0)^2$

- χ^2/dof good in most cases $\lesssim 1.5$
- Most additional terms compatible with zero within (large) errors
- Overall stat. error becomes very large \rightarrow , but central value does not change
- Adding only $\sim (a/r_0)^2$ -term is not sufficient
- Fits become unstable; adding further terms not possible