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outline

flavour symmetries in QED ¢

flavour symmetries in QCD4+QED¢

finite volume effects on the masses of charged hadrons

outlooks

bz + L) = ¢ (2)

the photon field is anti-periodic and has no zero modes
(A.Patella talk)
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flavour and electric charge in QED

® C* boundary conditions violate flavour and, consequently, electric charge conservation

® the pattern of flavour violation can be easily understood by means of propagators

® with periodic boundary conditions flavour is conserved and we have
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flavour and electric charge in QED

® C* boundary conditions violate flavour and, consequently, electric charge conservation

® the pattern of flavour violation can be easily understood by means of propagators

® with C* boundary conditions no flavour violation arises when matter particles
travel around the world an even number of times
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flavour and electric charge in QED

® C* boundary conditions violate flavour and, consequently, electric charge conservation

® the pattern of flavour violation can be easily understood by means of propagators

® while flavour is violated of two units when matter particles cross the boundary an
odd number of times
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(n) = (n1 +ng + n3g) mod 2 g
® if matter particles are massive this is an exponentially vanishing finite volume effect
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flavour and electric charge in QED

et
in the theory with Nz flavours, by calling F'y the generator of
the f-th U(1) flavour symmetry, we have that:
® F is broken by exponentially suppressed finite volume
effects
. + —
. (71)Ff is conserved € €
® the electric charge is a linear combination of the flavour
symmetry generators
Ny et
Q=3 asFy
f
et
® and the rules
AFf:O mod 2, AQ =0 mod 2 ~
imply that, for example, a single electron state can mix
with a three-electron state but not with the vacuum
+



flavour and electric charge in QCD+QED
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in QCD+QED we still have that each flavour generator is violated in units of 2,
Q=>qsFf, F=Y Fy, B=<, AF;=0 mod?2
f f

but, if the box size is large enough, only colourless particles can travel around the torus. it follows that

AQ =0 mod2, AB =0 mod2, AF =0 mod6

pseudoscalar mesons (the pions, the kaons, D and B) cannot mix with lighter states and are therefore stable
the proton cannot mix with states having B = 0 and it remains the lightest state with B = 1

when mixings occur, as in the figure, the effect vanishes exponentially. . .



a closer look at the w—3 mixing

the Q-3 mixing can be quantified in the context of a “generic” effective theory of hadrons. the one-loop analysis is simple
(the all-loop one a bit less. . .)

® the leading exponential contribution to the correlator is obtained when the 3 propagator goes on-shell,
py; = (Fimyx, 0), and the residue of the pole is proportional to the square of the self-energy
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® although to extract the {2 mass one has to take first the —2mp L - —13
PP . N e ~5x 10 s
infinite volume limit of the correlator (effective mass)

these flavour violating contributions should not represent 4
an issue in practice! mqL =



the mass formula
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let's analyze the structure of this expression:



the mass formula

a?£(2) 1 & (1)
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let's analyze the structure of this expression:

® the dependence upon the
boundary conditions is
contained only in the
generalized zeta functions
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1c* 2C* 3C*
£(1) —0.77438614142 —1.4803898065 —1.7475645946
£(2) —0.30138022444 —1.8300453641 —2.5193561521
£(4) 0.68922257439 —2.1568872986 —3.8631638072
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the mass formula
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let's analyze the structure of this expression:

the coefficients of the leading 1/L and 1/L?

terms are universal the universality of the leading terms has already been noticed in

the framework of QEDy, and QEDp, by BMW 14

® these are fixed by the Ward Identity
(see also Low 54, Gell-Mann and Goldberger 54) Am(L) &2 { e e ( o2 ) }

® and do not depend upon the internal structure nor m QEDy, 4w 2mL (mL)? L3

on the spin of the hadron



QED( vs. QEDy,: the universal contributions

0.00 T T T T
-0.05 - B

-0.10 B
-0.15 + g

-0.20 B
<025 + 1

2030 | QEDc with 3C*
035 QED. ‘ ‘ ‘
0.0 02 04 0.6 0.8 1.0
1/(mL)

at mL = 4, universal finite volume effects are:

® 2 times smaller, C*-BC along 3 directions
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QED( vs. QEDy,: the universal contributions
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at mL = 4, universal finite volume effects are:

® 2 times smaller, C*-BC along 3 directions



QED( vs. QEDy,: the universal contributions
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the mass formula
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let's analyze the structure of this expression:

® spin and structure dependent terms start to
contribute at 1/L*

m(mL)?2

® a part from the leading 1/L term, there are no

inverse odd powers of L

® the structure dependent coefficients are related to

physics
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the derivatives of the forward Compton scattering

amplitude
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spin and structure dependent terms start to contribute at l/L3 in

QED;, (BMW 14)
)

a’r
(mL)?

Am(L) ' - e? P’k
m 4T

QEDy, 2mL



conclusions

C* boundary conditions allow to solve the
problem of charged particles on a finite
volume in a local field theory

flavour and electric charge violating finite
volume effects arise. . .

but these are exponentially suppressed and
should not represent an issue in practical
applications

the leading 1/L and 1/L? finite volume
corrections to the mass of a charged hadron
are universal and much smaller than in
QEDy,

the structure dependent finite volume
corrections to the mass of a charged hadron
start to contribute at 1/L% (vs. 1/L% in
QEDL,)

® the paper will be out soon: it will contain a detailed

QCD+QEDG

Am(L)

® we look forward to a numerical implementation!
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analysis of the symmetries and of the compact formulation of



