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outline

• flavour symmetries in QEDC

• flavour symmetries in QCD+QEDC

• finite volume effects on the masses of charged hadrons

• outlooks

d̄γ5u −ūγ5d

φ(x + L̂) = φ
C

(x)

the photon field is anti-periodic and has no zero modes
(A.Patella talk)

Aµ(x + L̂) = −Aµ(x)



flavour and electric charge in QEDC

• C? boundary conditions violate flavour and, consequently, electric charge conservation

• the pattern of flavour violation can be easily understood by means of propagators

• with periodic boundary conditions flavour is conserved and we have

〈ψ(x)ψ̄(0)〉 =
∑
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flavour and electric charge in QEDC

• C? boundary conditions violate flavour and, consequently, electric charge conservation

• the pattern of flavour violation can be easily understood by means of propagators

• with C? boundary conditions no flavour violation arises when matter particles
travel around the world an even number of times

〈ψ(x)ψ̄(0)〉 =
∑
〈n〉=0

S(x + nL)

〈n〉 = (n1 + n2 + n3) mod 2
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flavour and electric charge in QEDC

• C? boundary conditions violate flavour and, consequently, electric charge conservation

• the pattern of flavour violation can be easily understood by means of propagators

• while flavour is violated of two units when matter particles cross the boundary an
odd number of times

〈ψ(x)ψ
T

(0)〉= −
∑
〈n〉=1

S(x + nL)C
−1 '

(
m

L

) 3
2
e
−mL

〈n〉 = (n1 + n2 + n3) mod 2

• if matter particles are massive this is an exponentially vanishing finite volume effect
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flavour and electric charge in QEDC

in the theory with Nf flavours, by calling Ff the generator of
the f -th U(1) flavour symmetry, we have that:

• Ff is broken by exponentially suppressed finite volume
effects

• (−1)
Ff is conserved

• the electric charge is a linear combination of the flavour
symmetry generators

Q =

Nf∑
f

qfFf

• and the rules

∆Ff = 0 mod 2 , ∆Q = 0 mod 2

imply that, for example, a single electron state can mix
with a three-electron state but not with the vacuum
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flavour and electric charge in QCD+QEDC

Ω− Ξ0

K− K+

Σ+
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• in QCD+QEDC we still have that each flavour generator is violated in units of 2,

Q =

Nf∑
f

qfFf , F =

Nf∑
f

Ff , B =
F

3
, ∆Ff = 0 mod 2

• but, if the box size is large enough, only colourless particles can travel around the torus. it follows that

∆Q = 0 mod 2 , ∆B = 0 mod 2 , ∆F = 0 mod 6

• pseudoscalar mesons (the pions, the kaons, D and B) cannot mix with lighter states and are therefore stable

• the proton cannot mix with states having B = 0 and it remains the lightest state with B = 1

• when mixings occur, as in the figure, the effect vanishes exponentially. . .



a closer look at the ω–Σ mixing

the Ω–Σ mixing can be quantified in the context of a “generic” effective theory of hadrons. the one-loop analysis is simple
(the all-loop one a bit less. . . )

+ ΣKΞ ΣKΞ
Ω Ω ΩΣ

• the leading exponential contribution to the correlator is obtained when the Σ propagator goes on-shell,
pΣ = (±imΣ, 0), and the residue of the pole is proportional to the square of the self-energy

ΣKΞ(pΣ) = VΩ−K−Ξ

 ∑
〈n〉=1

∫
d
4
xSK(x + nL)SΞ(−x)e

ipΣx

 VK−Ξ−Σ + · · ·

= α e
−mKL + · · ·

CΩΩ(t) = βe
−2mKL

e−mΣt

2mΣ

+ ZΩ
e−mΩt

2mΩ

+ · · ·

• although to extract the Ω mass one has to take first the
infinite volume limit of the correlator (effective mass)

• these flavour violating contributions should not represent
an issue in practice!

e
−2mKL ' 5× 10

−13
,

mπL = 4



the mass formula

∆m(L)
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4π
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let’s analyze the structure of this expression:
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let’s analyze the structure of this expression:

• the dependence upon the
boundary conditions is
contained only in the
generalized zeta functions

1C? 2C? 3C?

ξ(1) −0.77438614142 −1.4803898065 −1.7475645946

ξ(2) −0.30138022444 −1.8300453641 −2.5193561521

ξ(4) 0.68922257439 −2.1568872986 −3.8631638072

ξ(s) =
∑
n 6=0

(−1)n1+n2+n3

|n|s



the mass formula

∆m(L)

m
=

e2
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let’s analyze the structure of this expression:

• the coefficients of the leading 1/L and 1/L2

terms are universal

• these are fixed by the Ward Identity
(see also Low 54, Gell-Mann and Goldberger 54)

• and do not depend upon the internal structure nor
on the spin of the hadron

the universality of the leading terms has already been noticed in
the framework of QEDL and QEDTL by BMW 14
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QEDC vs. QEDL: the universal contributions
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at mL = 4, universal finite volume effects are:

• 2 times smaller, C?-BC along 3 directions

• 5 times smaller, C?-BC along 1 direction
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at mL = 4, universal finite volume effects are:

• 2 times smaller, C?-BC along 3 directions

• 5 times smaller, C?-BC along 1 direction
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at mL = 4, universal finite volume effects are:

• 2 times smaller, C?-BC along 3 directions

• 5 times smaller, C?-BC along 1 direction



the mass formula
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let’s analyze the structure of this expression:

• spin and structure dependent terms start to
contribute at 1/L4

• a part from the leading 1/L term, there are no
inverse odd powers of L

• the structure dependent coefficients are related to
physics

T` =
d`

d(k2)`
Tµµ(i|k|,k)

∣∣∣∣∣
|k|=0

the derivatives of the forward Compton scattering
amplitude

spin and structure dependent terms start to contribute at 1/L3 in
QEDL (BMW 14)
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conclusions

• C? boundary conditions allow to solve the
problem of charged particles on a finite
volume in a local field theory

• flavour and electric charge violating finite
volume effects arise. . .

• but these are exponentially suppressed and
should not represent an issue in practical
applications

• the leading 1/L and 1/L2 finite volume
corrections to the mass of a charged hadron
are universal and much smaller than in
QEDL

• the structure dependent finite volume
corrections to the mass of a charged hadron
start to contribute at 1/L4 (vs. 1/L3 in
QEDL)
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QEDC with 3C?

• the paper will be out soon: it will contain a detailed analysis of the symmetries and of the compact formulation of
QCD+QEDC

• we look forward to a numerical implementation!


