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Introduction

Electromagnetic corrections to hadronic quantities
Local formulation of QED in finite volume

An old idea...
Polley, Boundaries for SU(3)(C) x U(1)-el lattice gauge theory with a chemical potential, Z.
Phys. C59, 1993

C* boundary conditions provide a framework to describe a certain class of
electrically-charged states in a rigorous way. This class is wide enough to include
most of the spectroscopic applications.



No charge in a periodic box
Classical ElectroDynamics

Gauss's law forbids a net electric charge in a periodic box

HE(x) = p(x) = Q:/d3x p(t,x):/d3x OkE(t,x) = 0



No charge in a periodic box
Quantum ElectroDynamics

> Generator of gauge transformations (operators in the Schrédinger picture)

&(x) = e Ee(x) — p(x)

> Physical states are invariant under local gauge transformations (i.e. gauge
transformations that are continuously connected to the identity)

G(x)[) =0
> Electric-charge operator is the generator of global gauge transformations

Q=[x i) = [ ax 6

> Since global gauge transformations are continuously connected to the identity,
physical states have zero charge.



No charge in a periodic box
Gauge-fixed Quantum ElectroDynamics

> After gauge-fixing, the action is still invariant under global gauge transformations
(electric charge is conserved). One might think to define the electron mass by
looking at the two-point function

(¥(x)$(0))

> Large gauge transformations survive gauge fixing (n € Z*%)

Y(x) > €0 T ap(x)
A(x) = A() + 22
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» The two-point function is not invariant

(Y(x)P(0)) =0 ifx#0



Local finite-volume QED
How do we deal with the zero modes?

» QED7, enforces the constraint A, (0) =0

v

QED, enforces the constraint /~4M(/J()7 0)
> infinite volume QED + finite volume QCD
QED with massive photon (Mike Endres, last Tuesday)

v

Why do we need another approach? We are looking for a local formulation at finite
volume. (QED with massive photon is local.)



Local finite-volume QED
What does it mean?

> Microcausality

[A(t,x), B(t,y)] =0 forx#y

» Equations of motion are local differential equations: time evolution of fields in x is
determined only by the value of fields in an arbitrarily small neighbourhood of x.

> Local action

Z:/ e, 5:/d4xﬁ(x)
b.c.'s



Local finite-volume QED
Why?
Locality guarantees, e.g.

> Renormalizability by power counting

> Volume-independence of renormalization constants
» Operator product expansion

> Effective-theory description of long-distance physics

> Symanzik improvement program
>

Does it mean that other formulations do not enjoy these properties? No! They might
well do, but they should be not given for granted and proved case by case.

. . % V;
Finite-volume extrapolation mz(L) = my + Tl + L—z +...
Lattice spacing extrapolation mx(a) = ms + aa’+oat+...
In a setup in which a description in terms of the Symanzik effective theory is not valid,

the infinite volume limit must be taken first. A combined fit is not justified and might
give the wrong result.



C* boundary conditions

Ap(x+ LK) = —Au(x)  lx+Lk) = CHT(x)  Bx+ Lk) = -7 (x)C

> No zero modes for the gauge fields
> No linear gauge transformations

» Classicly Gauss's law does not forbid charged states

Q) :/d3x p(t,%) = /d3x OkE(£,x) £ 0
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C* boundary conditions

Aulx + L) = —Au(x) (x4 L) = CT1T(x)  Blx+ Lk) = —7 (x)C
Admissible gauge transformations must leave b.c.’s unchanged

Q(x) = £ | a(x+ Lk) = —a(x)
The group of continuous gauge transformations is disconnected G = Gy X Zs.

The subgroup Gy generated by local gauge transformations is connected to the
identity and does not contain any nontrivial global gauge transformation.

Only two global gauge transformations 2 = +1 leave the b.c.’s unchanged.



Electrically-charged states

The group of continuous gauge transformations is disconnected G = Gy X Z».

> Charge conservation is partially violated by the boundary conditions.
> Q is not conserved but (—1) is.
> Charge violation is a finite volume effect.
> Even though finite-volume effects are generally power-like, charge-violation effects are
exponentially suppressed.
> Charge violation is not a problem in practice, see Tantalo's talk.

> Electrically-charged physical states:
> invariant under local gauge transformations
> but not under global gauge transformations, (—1)¢ = —1



Electrically-charged states

Dirac interpolating operator:
W(t,x) = et 4 PO0HA(EY (£ x)
where ®(x) is the electric potential of a unit charge in a box with C* b.c.’s

AP (x) = 63(x)
d(x + Lk) = —d(x)

Nontrivial fact: such an electric potential exists!

> W(t,x) is invariant under local gauge transformations

» W(t,x) is not invariant under global gauge transformations (i.e. it is electrically
charged)



Electrically-charged states

Dirac interpolating operator:
W(t,x) = et 4 PO0HA(EY (£ x)
where ®(x) is the electric potential of a unit charge in a box with C* b.c.’s

AP (x) = 63(x)
d(x + Lk) = —d(x)

Nontrivial fact: such an electric potential exists!

> W(t,x)|0) is invariant under local gauge transformations

> W(t,x)|0) is not invariant under global gauge transformations (i.e. it is
electrically charged)

The electron mass is defined in a gauge-invariant fashion:

(W(t, x)T(0)) ~ A(x)e~tm



Checkpoint

» QED with C* boundary conditions is a possible local formulation of QED in finite
volume.

» C* boundary conditions provide a framework to describe a certain class of
electrically-charged states in a rigorous and gauge-invariant way.

» C* boundary conditions partially break charge conservation... see next talk.



