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Introduction

I Electromagnetic corrections to hadronic quantities

I Local formulation of QED in finite volume

I An old idea...
Polley, Boundaries for SU(3)(C) x U(1)-el lattice gauge theory with a chemical potential, Z.

Phys. C59, 1993

I C∗ boundary conditions provide a framework to describe a certain class of
electrically-charged states in a rigorous way. This class is wide enough to include
most of the spectroscopic applications.



No charge in a periodic box
Classical ElectroDynamics

Gauss’s law forbids a net electric charge in a periodic box

∂kEk (x) = ρ(x) ⇒ Q =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) = 0



No charge in a periodic box
Quantum ElectroDynamics

I Generator of gauge transformations (operators in the Schrödinger picture)

Ĝ(x) = ∂k Êk (x)− ρ̂(x)

I Physical states are invariant under local gauge transformations (i.e. gauge
transformations that are continuously connected to the identity)

Ĝ(x)|ψ〉 = 0

I Electric-charge operator is the generator of global gauge transformations

Q̂ =

∫
d3x ρ̂(x) =

∫
d3x Ĝ(x)

I Since global gauge transformations are continuously connected to the identity,
physical states have zero charge.



No charge in a periodic box
Gauge-fixed Quantum ElectroDynamics

I After gauge-fixing, the action is still invariant under global gauge transformations
(electric charge is conserved). One might think to define the electron mass by
looking at the two-point function

〈ψ(x)ψ̄(0)〉

I Large gauge transformations survive gauge fixing (n ∈ Z4)

ψ(x)→ e
∑
ρ

2πı xρnρ
Lρ ψ(x)

Aµ(x)→ Aµ(x) +
2πnµ

Lµ

I The two-point function is not invariant

〈ψ(x)ψ̄(0)〉 = 0 if x 6= 0



Local finite-volume QED
How do we deal with the zero modes?

I QEDTL enforces the constraint Ãµ(0) = 0

I QEDL enforces the constraint Ãµ(p0, 0)

I infinite volume QED + finite volume QCD

I QED with massive photon (Mike Endres, last Tuesday)

Why do we need another approach? We are looking for a local formulation at finite
volume. (QED with massive photon is local.)



Local finite-volume QED
What does it mean?

I Microcausality

[A(t, x),B(t, y)] = 0 for x 6= y

I Equations of motion are local differential equations: time evolution of fields in x is
determined only by the value of fields in an arbitrarily small neighbourhood of x .

I Local action

Z =

∫
b.c.’s

e−S , S =

∫
d4x L(x)



Local finite-volume QED
Why?

Locality guarantees, e.g.

I Renormalizability by power counting
I Volume-independence of renormalization constants
I Operator product expansion
I Effective-theory description of long-distance physics
I Symanzik improvement program
I ...

Does it mean that other formulations do not enjoy these properties? No! They might
well do, but they should be not given for granted and proved case by case.

Finite-volume extrapolation mπ(L) = mπ +
v1

L
+

v2

L2
+ . . .

Lattice spacing extrapolation mπ(a) = mπ + c1a
2 + c2a

4 + . . .

In a setup in which a description in terms of the Symanzik effective theory is not valid,
the infinite volume limit must be taken first. A combined fit is not justified and might
give the wrong result.



C∗ boundary conditions

Aµ(x + Lk) = −Aµ(x) ψ(x + Lk) = C−1ψ̄T (x) ψ̄(x + Lk) = −ψT (x)C

I No zero modes for the gauge fields

I No linear gauge transformations

I Classicly Gauss’s law does not forbid charged states

Q(t) =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) 6= 0



C∗ boundary conditions

Aµ(x + Lk) = −Aµ(x) ψ(x + Lk) = C−1ψ̄T (x) ψ̄(x + Lk) = −ψT (x)C

I Admissible gauge transformations must leave b.c.’s unchanged

Ω(x) = ±eıα(x) , α(x + Lk) = −α(x)

I The group of continuous gauge transformations is disconnected G = G0 × Z2.

I The subgroup G0 generated by local gauge transformations is connected to the
identity and does not contain any nontrivial global gauge transformation.

I Only two global gauge transformations Ω = ±1 leave the b.c.’s unchanged.



Electrically-charged states

The group of continuous gauge transformations is disconnected G = G0 × Z2.

I Charge conservation is partially violated by the boundary conditions.
I Q is not conserved but (−1)Q is.
I Charge violation is a finite volume effect.
I Even though finite-volume effects are generally power-like, charge-violation effects are

exponentially suppressed.
I Charge violation is not a problem in practice, see Tantalo’s talk.

I Electrically-charged physical states:
I invariant under local gauge transformations
I but not under global gauge transformations, (−1)Q = −1



Electrically-charged states

Dirac interpolating operator:

Ψ(t, x) = e−ı
∫
d3y Φ(y−x)∂kAk (t,y)ψ(t, x)

where Φ(x) is the electric potential of a unit charge in a box with C∗ b.c.’s

∂k∂kΦ(x) = δ3(x)

Φ(x + Lk) = −Φ(x)

Nontrivial fact: such an electric potential exists!

I Ψ(t, x) is invariant under local gauge transformations

I Ψ(t, x) is not invariant under global gauge transformations (i.e. it is electrically
charged)



Electrically-charged states

Dirac interpolating operator:

Ψ(t, x) = e−ı
∫
d3y Φ(y−x)∂kAk (t,y)ψ(t, x)

where Φ(x) is the electric potential of a unit charge in a box with C∗ b.c.’s

∂k∂kΦ(x) = δ3(x)

Φ(x + Lk) = −Φ(x)

Nontrivial fact: such an electric potential exists!

I Ψ(t, x)|0〉 is invariant under local gauge transformations

I Ψ(t, x)|0〉 is not invariant under global gauge transformations (i.e. it is
electrically charged)

The electron mass is defined in a gauge-invariant fashion:

〈Ψ(t, x)Ψ̄(0)〉 ' A(x)e−tm



Checkpoint

I QED with C∗ boundary conditions is a possible local formulation of QED in finite
volume.

I C∗ boundary conditions provide a framework to describe a certain class of
electrically-charged states in a rigorous and gauge-invariant way.

I C∗ boundary conditions partially break charge conservation... see next talk.


