

Pure SU(3) Topological Susceptibility at Finite Temperature with the Wilson Flow

July 15, 2015 | Simon Mages | Szabolcs Borsányi Zoltán Fodor Sándor D. Katz Dániel Nógrádi Kálmán K. Szabó

Outline

Introduction

Topological Susceptibility with the Wilson Flow

Subvolume Method

Finite Temperature Results

Discussion and Outlook

Motivation

- Missing part of Standard Model: Dark Matter
- Candidates: MACHOs, WIMPs, axions, ALPs, ...
- Peccei-Quinn mechanism for strong CP problem byproduct: axions
- PQ axion dynamics depend on non-perturbative QCD potential at finite temperature for CP restoration

Use Lattice QCD to constrain Dark Matter:

Lattice QCD $\Rightarrow \chi(T) = f_a^2 m_a(T)^2 \Rightarrow$ Dark Matter

Previous lattice studies

- [Alles:1996nm,Gattringer:2002mr] etc. 1st gen results
- [Berkowitz:2015aua] large volume/statistics up to 2.5T_c
- [Kitano:2015fla] reweighting to get $Q \neq 0$

Topological Charge

Integral

$$Q = \int_{\mathcal{M}} \mathsf{d}^4 x q(x)$$

over the topological charge density

$$q(x) = \frac{1}{4\pi^2} \epsilon_{\mu\nu\rho\sigma} F_{\mu\nu}(x) F_{\rho\sigma}(x)$$

- discretized in finite volume on $\mathcal{M}=\mathbb{T}^4$
- sectors with different Q separated by infinite action barrier in continuum
- problem for ergodicity of MC algorithms with small "step" size in field space

Topological Susceptibility

Integral of qq correlator

$$\chi = \int_{\mathcal{M}} \mathsf{d}x \langle q(\mathbf{0})q(x)
angle$$

With global translation symmetry on $\mathcal{M}=\mathbb{T}^4$

$$\chi = \frac{1}{V_4} \langle Q^2 \rangle$$

- measurement must sample sectors with $Q \neq 0$
- difficult for simulations on $\mathcal{M}=\mathbb{T}^4$

Renormalization of χ

 χ has additive and multiplicative renormalization [Alles:1997nu]

$$\chi^{R} = Z\chi + \chi_{0}$$

• cooling makes $Z \rightarrow 1$ and $\chi_0 \rightarrow 0$

 $\chi(t)$ at finite flow time is already renormalized [Luscher:2010iy]

- sufficient to perform a continuum limit at flow time fixed in physical units, e.g. $t = w_0^2$
- choice of t impacts size of lattice artefacts

July 15, 2015

Flow dependence of $\chi(t)$

- $\chi(t)$ has weak dependence on choice of t
- we choose $t = w_0^2 \approx (0.176 \text{ fm})^2$

Lattice Setup

Pure SU(3)

- Symanzik improved gauge action: O(a²) errors
- gluonic q(x) from clover field strength tensor F_{μν}: O(a²) errors
- update sweep: 1 heatbath + 4 overrelaxation $\Rightarrow z = 1$

Parameters

- 0.1 $T_c \le T \le 4.0 T_c$
- *n*_t = 5, 6, 8
- spatial volume fixed in physical units $L_{x,y} = 2/T_c$
- $L_z = 2L_{x,y}$ to enable subvolume analysis

Simulations on the QPACE machines in Wuppertal and Jülich

Subvolume Trick [Brower:2014bqa]

Possible solution

- discretization of Q is finite volume effect
- continuous Q_{sub} on finite subvolumes of \mathbb{R}^4 and \mathbb{T}^4

• calculate
$$\chi_{sub} = Q_{sub}^2 / V_{sub}$$

make infinite V_{sub} limit instead of infinite V₄ limit

Quenched and T = 0: large χ

plausible, works

Dynamic or $T \neq 0$: small χ

- finite volume errors are T independent
- errors larger than χ for reasonable volumes

Subvolume Trick - Finite Volume Errors

$$T = 2T_c, N_t = 5, L_{sub} = L_z/2$$

error scales like 1/L

Subvolume Trick 2

- step from *χ* = ∫_M dx⟨q(0)q(x)⟩ to *χ* = ⟨Q²⟩/V₄ required translation invariance of *M* = T⁴
- not valid for subvolume with boundary \Rightarrow finite volume error
- large cancellations in integral of correlator ⇒ large finite volume error

Alternative:

- introduce largest distance in $\chi = \int_{\mathcal{M}} dx \langle q(0)q(x) \rangle$
- reduced finite volume errors
- reduced global/topological effects of discretization of Q

Subvolume Trick 2 - Finite Volume Errors

 $T = 2T_c, N_t = 5, L_{sub} = L_z/2$ no 1/L

Results - Full Volume VS Sub Volume

Result - Lattice Spacing Dependence

Preliminary Results - Previous Studies

Discussion and Outlook

Technical:

- χ up to $T = 4T_c$
- O(a²) improved action and operator
- Gluonic charge at finite Wilson Flow time
- new subvolume method with less finite volume errors
 Outlook:
- Continuum extrapolated results
- beat down quenched error with more statistics at T = 4T_c
- even higher T
- evaluate subvolume method at larger V/V_{sub}

Wilson Flow

flow $B_{\mu}(t, x)$ defined by

$$egin{aligned} &rac{d}{dt}B_{\mu}=D_{
u}G_{
u\mu},\ & extsf{B}_{\mu}|_{t=0}=A_{\mu}, \end{aligned}$$

with field strength tensor G at finite tGenerated by stout smearing steps

$$egin{aligned} rac{d}{d\hat{t}}V_{\mu} = \mathrm{i} Q_{\mu}V_{\mu}, \ V_{\mu}ert_{t=0} = U_{\mu}, \end{aligned}$$

 \rightarrow approximation by small stout smearing steps with $r_{smear}^2 = 8t = 8N_{stout}\rho_{stout}$

July 15, 2015

Member of the Hel

Stout Smearing

damp UV fluctuations i.e. high energy part of the spectrum generate "fat" links by

$$\begin{split} U'_{\mu} = & e^{iQ_{\mu}} U_{\mu}, \\ Q_{\mu} = & \frac{i}{2} \left(\Omega^{\dagger}_{\mu} - \Omega_{\mu} - \frac{1}{3} \text{tr}[\Omega^{\dagger}_{\mu} - \Omega_{\mu}] \right), \\ \Omega_{\mu} = & \left(\rho_{\text{Stout}} \sum_{\nu \neq \mu} C_{\mu\nu} \right) U^{\dagger}_{\mu}, \end{split}$$

with staples $C_{\mu\nu}$ effective smearing radius

$$r_{smear} = a\sqrt{8\rho_{Stout}N_{Stout}}$$

- m. luscher, jhep **1008** (2010) 071 [arxiv:1006.4518 [hep-lat]].
- s. borsanyi, s. durr, z. fodor, c. hoelbling, s. d. katz,
 s. krieg, t. kurth and l. lellouch *et al.*, jhep **1209** (2012)
 010 [arxiv:1203.4469 [hep-lat]].
 - k. symanzik, nucl. phys. b **226** (1983) 187.
- h. baier, h. boettiger, m. drochner, n. eicker, u. fischer, z. fodor, a. frommer and c. gomez *et al.*, pos lat **2009** (2009) 001 [arxiv:0911.2174 [hep-lat]].
- s. borsanyi, g. endrodi, z. fodor, s. d. katz and k. k. szabo, jhep **1207** (2012) 056 [arxiv:1204.6184 [hep-lat]].
- B. Alles, M. D'Elia, A. Di Giacomo and R. Kirchner, Phys. Rev. D **58** (1998) 114506 [hep-lat/9711026].

- R. Kitano and N. Yamada, arXiv:1506.00370 [hep-ph].
- E. Berkowitz, M. I. Buchoff and E. Rinaldi, arXiv:1505.07455 [hep-ph].
- B. Alles, M. D'Elia and A. Di Giacomo, Nucl. Phys. B 494 (1997) 281 [Nucl. Phys. B 679 (2004) 397] [hep-lat/9605013].
- R. C. Brower *et al.* [LSD Collaboration], Phys. Rev. D 90 (2014) 1, 014503 [arXiv:1403.2761 [hep-lat]].