Proposal for a Quantum Simulation

of the $C P(2)$ Model on an Optical Lattice

Concept : Simulations employing a quantum system (analog quantum computing) could solve the sign problem of complex actions; the phase factor is included.

Long-term goal : explore QCD phase diagram at finite baryon density and vacuum angle θ.

Here : proposal for the quantum simulation of the 2d $C P(2)$ model, with ultra-cold Alkaline Earth Atoms (AEAs) trapped in an optical lattice.

W. Bietenholz ${ }^{\text {a }}$, M. Dalmonte ${ }^{\text {b }}$, W. Evans ${ }^{\text {c }}$, U. Gerber ${ }^{\text {a }}$,
C. Laflamme ${ }^{\text {b }}$, H. Mejía-Díaz ${ }^{\text {a }}$, U.-J. Wiese ${ }^{\text {c }}$, P. Zoller ${ }^{\text {b }}$
${ }^{\text {a }}$ Universidad Nacional Autónoma de México, Mexico
${ }^{\text {b }}$ Universität Innsbruck, Austria, ${ }^{\text {c }}$ Universität Bern, Switzerland

$C P(N-1)$ Models

2d $C P(N-1)$ models, as toy models for QCD [1]

$$
S[\vec{z}]=\int d^{2} x \partial_{\mu} \vec{z}^{\dagger} \cdot \partial_{\mu} \vec{z}, \quad \vec{z}(x) \in \mathbb{C}^{N},|\vec{z}(x)| \equiv 1
$$

or Hermitian projection matrices $P=|\vec{z}\rangle\langle\vec{z}|, \quad$ Tr $P=1, \quad P=P^{2}=P^{\dagger}$

- asymptotic freedom
- topological sectors
- dynamically generated mass gap
- $V=\infty$: $\operatorname{SSB} \operatorname{SU}(N) \rightarrow U(N-1)$ $\Rightarrow \quad 2(N-1)$ Nambu-Goldstone bosons
- $V=L \times L^{\prime}, \quad L \gg L^{\prime}: \quad \xi \propto e^{\text {const. } L^{\prime}}$

For increasing $L^{\prime}: \xi \gg L^{\prime}$, dimensional reduction

D-theory formulation of a $C P(N-1)$ model

$S U(N)$ quantum spins on a "ladder"
n coupled spin chains, plus β-direction

$$
\begin{equation*}
\hat{H}=-J \sum_{\langle x y\rangle} \sum_{a=1}^{N^{2}-1} T_{x}^{a} T_{y}^{a *} \quad(J>0: \text { anti-ferromagnet }) \tag{1}
\end{equation*}
$$

$T_{x}^{a}\left(T_{y}^{a *}\right)$: spin operators in (anti-)fundamental representation of $S U(N)$

$$
\left[T_{x}^{a}, T_{y}^{b}\right]=\mathrm{i} \delta_{x y} f_{a b c} T_{x}^{c}
$$

$N=3$ or $4, T \rightarrow 0, V \rightarrow \infty$ SSB down to $U(N-1)$
NGBs in $S U(N) / U(N-1)=C P(N-1)$
$C P(2)$ or $C P(3)$ model as low energy eff. theory [2]

$$
S[P]=\frac{1}{g^{2}} \int d^{2} x \operatorname{Tr}\left[\partial_{x} P \partial_{x} P+\frac{1}{c^{2}} \partial_{t} P \partial_{t} P\right]-\mathrm{i} \theta Q[P]
$$

(c: spin wave velocity). For $L \gg L^{\prime}$: quasi-NGBs, $\theta=L^{\prime} \pi$
Simulations with loop cluster algorithm, $L=1500$, reveals dim. reduction

Experimental Setup

Hamiltonian (1) can be implemented by ultra-cold Alkalin Earth Atoms (AEAs), trapped in an optical lattice

AEAs at $T \sim 10^{-9} \mathrm{~K}$, in electronic ground state Intrinsic $S U(N)$ symmetry, $N \leq 2 I+1$, I nuclear spin, can be realized up to $N=10$ [3].

Re-write \hat{H} in terms of fermionic bilinears, composed of $\hat{d}_{x}^{\dagger}, \hat{d}_{x}$:

$$
T_{x}^{a}=\hat{d}_{x m}^{\dagger} \lambda_{m m^{\prime}}^{a} \hat{d}_{x m^{\prime}}, \quad-T_{x}^{a *}=-\hat{d}_{x m}^{\dagger} \lambda_{m m^{\prime}}^{a *} \hat{d}_{x m^{\prime}}
$$

λ^{a} : generalised Gell-Mann matrices, $\operatorname{Tr}\left[\lambda^{a}, \lambda^{b}\right]=\delta^{a b}, m, m^{\prime}=1 \ldots N$: state labels

$$
\begin{aligned}
\hat{H}= & \hat{H}_{t}+\hat{H}_{U} \\
& \hat{H}_{t}=-t \sum_{\langle x y\rangle, m}\left(\hat{c}_{x m}^{\dagger} \hat{c}_{y m}+\hat{c}_{y m}^{\dagger} \hat{c}_{x m}\right) \\
\hat{H}_{U} & =\frac{U}{2} \sum_{x} n_{x}\left(n_{x}-1\right)+V \sum_{x \in A} n_{x}
\end{aligned}
$$

$\hat{c}_{x m}$: annihilates nuclear spin level $m \in\{-I \ldots I\}$ at x, t : hopping parameter,
U : onsite interaction, $n_{x}=\sum_{m} \hat{c}_{x m}^{\dagger} \hat{c}_{x m}$ occupation number,
V : energy offset between staggered sub-lattices A, B

b) $\quad \begin{aligned} & \therefore \\ & \square\end{aligned}\left|m_{f}=+I\right\rangle$
c)
$\bigcirc \cap \sim 𠃌$

a) $S U(N)$ spins on a bipartite $L^{\prime} \times L$ lattice, $L^{\prime} \gg L$
b) AEA with $N \leq 2 I+1$ hyperfine states; \vec{B}-field \rightarrow Zeeman splitting
c) Sub-lattice A : $\hat{d}^{\dagger}=\hat{c}, S U(N)$ spin in fundamental rep. Sub-lattice $B: \hat{d}=\hat{c}, \quad \ldots \quad \ldots \quad$ anti-fundamental rep.
$A \longleftrightarrow B$: particle \longleftrightarrow hole transformation
d) Interaction $T_{x \in A}^{a} \leftrightarrow-T_{y \in B}^{a *}$

Initial state: sub-lattice $A: 1$ AEA / site $\widehat{=} 1$ fermion sub-lattice $B: N-1$ AEAs / site $\widehat{=} N-1$ fermions $\widehat{=} 1$ hole

Hopping parameter $t \longleftrightarrow$ coupling J, tuned by energy offset V

Strong coupling: $t \ll U, V$
\approx eigenstates of \hat{H}_{U}, plus tunnelling due to $\hat{H}_{t} \widehat{=} \operatorname{SU}(N)$ exchange terms
To $O\left((t / U)^{2}\right)$ this reproduces \hat{H}, with [4]

$$
J=\frac{t^{2} U}{[-V+U(N-3)][V-U(N-1)]}
$$

Initial state preparation:

- Start with N AEAs/site, each level m occupied once (can be achieved by optical pumping [4])
- Split each site adiabatically into a double well $(\rightarrow A, B$ sub-lattice formation), reduce barrier \rightarrow quantum dynamics according to \hat{H} (realized already for bosonic alkaline atoms [5]).

Large L and L^{\prime} up to ≈ 12 is feasible \Rightarrow dim. reduction sets in, cf. Fig. 1. Experimentally ξ can be measured by Bragg spectroscopy [5].

Phase transition at $\theta=\pi$

$$
L^{\prime} \text { odd } \Rightarrow \theta=\pi
$$

$1^{\text {st }}$ order phase transition with spontaneous C sym. breaking; numerical evidence in Ref. [6].

In experiment: $\mathrm{C}=$ shift in L-direction
$T_{x}^{a} \rightarrow-T_{x+\hat{1}}^{a *}, \quad-T_{x}^{a *} \rightarrow T_{x+\hat{1}}^{a}$ where $x(x+\hat{1})$ in sub-lattice $A(B)$.
Order parameter for C sym. breaking

$$
D=\sum_{x \in A}\left\langle T_{x}^{a} T_{x+\hat{1}}^{a *}-T_{x}^{a} T_{x-\hat{1}}^{a *}\right\rangle
$$

detects dimerisation.
$\theta=0:$ C holds, $D=0$
$\theta=\pi:$ C broken, two degenerate ground states with $\pm D$:
bonds between nearest neighbour sites, ambiguous \rightarrow degeneracy $|+\rangle,|-\rangle$

For ultra-cold atoms: singlets that contribute to D can be measured by spin changing collisions $[5,7]$.

Proposal for the ground state preparation:
start from total dimerisation, turn on hopping parameter t adiabatically

a) E_{0} and E_{1} as functions of an adiabatic parameter ϕ
b) Decay of the false "vacuum" $|-\rangle$ (all singlet states, D maximal) as a function of real time, once the evolution is driven by \hat{H}.

Dynamics at $L=14$, exactly computed by \hat{H} diagonalisation; corresponds to real time evolution of false vacua in $C P(N-1)$ models.

Conclusions

Proposal for quantum simulation of $C P(N-1)$ models by ultra-cold AEAs fixed in an optical lattice.
$S U(N)$ symmetric spin interactions ($N \leq 2 I+1, I=$ nuclear spin).
Tools for ground state preparation and adiabatic modification exist
\Rightarrow observe e.g. dynamics of C breaking \leftrightarrow restoration.
Access to cont. limit thanks to asymptotic freedom
\rightarrow to be confronted with numerical results in Fig. 1.

References

[1] A. D'Adda, M. Lüscher, P. Di Vecchia, Nucl. Phys. B146 (1978) 63.
[2] K. Harada, N. Kawashima, M. Troyer, Phys. Rev. Lett. 90 (2003) 117203.
[3] A.V. Gorshkov et al., Nature Phys. 6 (2010) 289.
[4] F. Scazza et al., Nature Phys. 10 (2014) 779.
[5] S. Nascimbène et al., Phys. Rev. Lett. 108 (2012) 205301.
[6] B.B. Beard, M. Pepe, S. Riederer, U.-J. Wiese, Phys. Rev. Lett. 94 (2005) 010603.
[7] B. Paredes, I. Bloch, Phys. Rev. A77 (2008) 023603.

