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Introduction and Motivation



  

Motivation for studying K ππ Decays→

● Direct CPV first observed in late 90s at CERN and Fermilab in K0 ππ:→

measure of indirect CPVmeasure of direct CPV

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)

● Likely explanation for matter/antimatter asymmetry in Universe, 
baryogenesis, requires violation of CP in decays (direct CPV).

● Amount of direct CPV in Standard Model appears too low to describe 
measured M/AM asymmetry: tantalizing hint of new physics.

● Small size of ε' makes it particularly sensitive to new direct-CPV 
introduced by most BSM models.



  

The role of the lattice

● In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi 
states than I=2.   

● Perturbative running to charm scale accounts for about a factor of 2. Is 
the remaining 10x non-perturbative or New Physics?

● The answer is low-energy QCD!  RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] 

● SU(3) ChPT unreliable because strange quark is too heavy. 
● Lattice techniques allow for calculation completely from first principles 

and without any model dependence.

(the ΔI=1/2 rule) 

Strong cancellation between the two dominant contractions  

heavily suppressing Re(A2).



  

Standard Model Physics 
and Lattice Determination



  

Weak Effective Theory
● At energy scales μ«MW, K ππ decays accurately described by weak →

effective theory.

perturbative Wilson coeffs.

● Qj are 10 effective four-quark operators:

Imaginary part solely responsible for CPV 
(everything else is pure-real)

dominate 
Re(A0), Re(A2)

Q4, Q6 dominate 
Im(A0)

Q7, Q8 dominate 
Im(A2)



  

Lattice Determination of K→ππ
● On the lattice compute                              

● Operators must be renormalized into same scheme as Wilson coeffs: 
Use RI-(S)MOM NPR and perturbatively match to MSbar at high scale.

● Mixing under renormalization, hence Z is a matrix.

● F is finite-volume correction calculated using LL method.

● Important to calculate with physical (energy-conserving) kinematics. 
With physical masses:

we require non-zero relative momentum for the pions.

● This is excited state of the ππ-system. Possibilities: 

● try to perform multi-state fits to very noisy data (esp. A0 where 
there are disconn. diagrams)  or

● modify boundary conditions to remove the ground-state



  

An old homework problem
● 1964: CP-violation (indirect) first observed at BNL (Cronin, Fitch et al → 1980 Nobel prize )

● 1973: Framework for Standard Model CPV established (Kobayashi, Maskawa)

● 1993: Publication of first evidence of direct CPV from NA31 expt at CERN.

● 1999: KTeV at FermiLab and NA48 at CERN confirm direct CPV.

● 2001: First quenched calculations of ε' performed by CP-PACS and RBC using single 
particle amplitudes and LO ChPT to correct for missing pion.

● 2001: Technique established for lattice measurement of decays (Lellouch, Luscher)

● 2011: First full threshold (stationary, unphysically-heavy pions) calc. of A0 and A2 using 
dynamical domain wall fermions performed by RBC/UKQCD.

● 2012: First calculation of A2 performed by RBC/UKQCD using DWF with physical 
kinematics, pion masses and large physical volume but single lattice spacing.

● 2015: Continuum calculation of A2 performed by RBC/UKQCD

● 2015: Full threshold calculation of A0 and A2 using Wilson fermions by Ishizuka et al  
[arXiv:1505.05289]

● 2015: (This work) First complete, ab initio determination of ε' with physical kinematics 
and pion masses.



  

ΔI=1/2 Calculation

arXiv:1505.07863 [hep-lat]



  

Matrix element calculation

● ~50 distinct contraction topologies → 4 classes:

● Type 4 disconn. diagrams dominate noise. Use Trinity-style all-to-all 
(A2A) propagators:

 

● Measure with 5 different K→π separations (10,12,14,16,18)
● Perform all spatial and temporal translations of both type 3 and type 4 

diagrams (cleaner type 1 and 2 measured every 8th timeslice)

● 900 exact low-eigenmodes computed using Lanczos algorithm
● Stochastic high-modes with full spin/color/flavor dilution

● A0 obtained via neutral kaon decays                         and  



  

Physical Kinematics

● A2 calculation used APBC on d-quarks, removes stationary charged pion 
state BUT breaks isospin and doesn't work for π0.

● Solution: Use G-parity BCs:

                   
● As a boundary condition: (i=+, -, 0)

● At quark level: 

● Gauge invariance → gauge field must obey charge conjugation BCs; new 
ensembles needed.

● For stationary kaon we must introduce fictional degenerate partner to 
the strange quark: s'

● Coupling of unphysical kaon partner to physical operators 
exponentially suppressed and can be neglected.

is G-parity even (p=0)

where C = γ2γ4 in our 
conventions

(moving ground state)



  

Ensemble
● 323x64 Mobius DWF ensemble with IDSDR gauge action at β=1.75. Coarse 

lattice spacing (a-1=1.378(7) GeV) but large,  (4.6 fm)3 box.

● Using Mobius params (b+c)=32/12 and Ls=12 obtain same explicit χSB as 
the Ls=32 Shamir DWF + IDSDR ens. used for ΔI=3/2 but at reduced cost.

● Utilized USQCD 512-node BG/Q machine at BNL, the DOE “Mira” BG/Q 
machines at ANL and the STFC BG/Q “DiRAC” machines at Edinburgh, UK.

● Performed 216 independent measurements (4 MDTU sep.).

● Cost is ~1 BG/Q rack-day per complete measurement                                      
(4 configs generated + 1 set of contractions).

● G-parity BCs in 3 spatial directions results in close matching of kaon and 
ππ energies:

mK=490.6(2.4) MeV

Eππ(I=0) = 498(11) MeV

Eππ(I=2) = 573.0(2.9) MeV

Eπ=274.6(1.4) MeV    (mπ = 143.1(2.0) MeV)



  

I=0 ππ energy

● Signal/noise deteriorates quickly 
due to vacuum contrib.

● Difficult to determine plateau start. 
Performed both 1- and 2-state fits.

● Our phase shift                                       lower than most pheno estimates, which 
prefer                    . 

● Luscher formula very steep in Eππ: small shifts energy translate to large 
(fractional) errors in δ0. More statistics needed to resolve.

● Using 35° → ~3% change in A0; much smaller than other errs. For consistency 
we choose to use our lattice value.

2% stat err!



  

Matrix element fits

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q
2 Q

6

● Use tmin(π→Q) = 4 here rather than 6 as signal quickly decays into noise (40% 
increase in stat. error with tmin=5!). 

● However comparison to tmin=3 shows no statistically resolvable difference, 
suggesting excited state contamination small.

● Estimate 5% excited state systematic by comparing single-exp fit result for 
ππ(I=0) amplitude with tmin=4 to double-exp fit with tmin=3.



  

Systematic errors

● 15% renormalization error dominant due to low, 1.53 GeV 
renormalization scale. Estimate by comparing two different RI/SMOM 
intermediate schemes and use the largest observed differences.

● 12% Wilson coefficient error large for same reason. Conservatively 
estimate as largest observed fractional change between using LO and 
NLO.

● Errors for each separate operator matrix element:

● Treat as uncorrelated when combining to form A0.



  

● ~85% total error on the predicted Im(A0) due to strong cancellation between 
dominant Q4 and Q6 contributions:

(This work)

(Experiment)

Results for A0

● Good agreement between lattice and experiment for Re(A0) serves as test 
for method.

● Re(A0) from expt far more precise, and is dominated by tree-level Q1 and Q2 
hence unlikely to receive large BSM contributions. Use for computing ε'. 

(This work)

despite only 40% and 25% respective errors for the matrix elements.



  

Results for ε' and concluding 
remarks  



  

Results for ε'

● Using Re(A0) and Re(A2) from experiment and our lattice values for 
Im(A0) and Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.



  

Conclusions and Outlook
● First direct computation of A0 with controllable errors performed.

● Measured Re(A0) in good agreement with experiment.

● 85% total error on Im(A0) despite 25% and 40% errors on dominant Q6 and Q4 
contributions resp., due to strong mutual cancellation.

● On final result, stat. error currently dominant.

● Sys. errors dominated by perturbative truncation errors on the 
renormalization and Wilson coeffs due to low, 1.53 GeV scale.

● Currently computing NPR running to higher energies in order to reduce this 
systematic.

● Total error on Re(ε'/ε) is ~3x the experimental error, and we observe a 2.1σ 
discrepancy. Strong motivation for continued study!

● Hope to achieve O(10%) errors on Re(ε'/ε) on a timescale of ~5 years.

● We hope these results with spur new efforts in the experimental community 
to reduce the current 15% error on the experimental number.

Thank you!



  



  

ΔI=3/2 Calculation

  Phys.Rev. D 91 (2015) 7,  074502

      [arXiv:1502.00263 [hep-lat]].



  

Calculation Strategy

● A2 can be computed directly from charged kaon decay:

● Remove stationary (charged) pion state using antiperiodic BCs on d-
quark propagator:

 
Moving ground state!

Stationary ground state....

● Use Wigner-Eckart theorem to remove neutral pion from problem

● APBCs on d-quark break isospin symmetry allowing mixing between 
isospin states: however π+π+ is the only charge-2 state with these Q-
numbers hence it cannot mix.



  

● Results:

● Systematic error completely dominated by perturbative error on NPR and 
Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius DWF 
ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. Continuum 
limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!
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