



#### Lattice QCD Input to Axion Cosmology

Evan Berkowitz Lawrence Livermore National Laboratory

LATTICE 2015 Kobe, Japan

arXiv:1505.07455 – E. Berkowitz, M. Buchoff, E. Rinaldi

LLNL-PRES-669910 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

#### Big Idea

- Axions were originally proposed to deal with the Strong CP Problem, also form a plausible DM candidate.
  - Calculating the axion energy density requires nonperturbative QCD input.
- Being sought in ADMX (LLNL, UW) & CAST (CERN), and (soon) IAXO with large discovery potential in the next few years.
- Requiring  $\Omega_a \leq \Omega_{CDM}$  yields a lower bound on the axion mass today. Preskill, Wise & Wilczek, Phys Lett B **120** (1983) 127-132



The Economist, 19 Dec 2006



#### QCD Theta Term

- QCD has a parameter,  $\theta$ .
  - Controls QCD CP violation.

$$\mathcal{L}_{\text{QCD}} \ni \theta \,\frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$
CP Violating

• Topological.

$$Q = \frac{1}{32\pi^2} \int d^4x \ \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \in \mathbb{Z}$$
$$e^{iS} \propto e^{iQ\theta}$$

- $\theta$  can take any value in  $(-\pi,\pi]$ .
- Neutron EDM ≤ 3 10<sup>-26</sup>e•cm Baker et al., PRL 97, 131801 (2006) / hep-ex/0602020

• 
$$\implies$$
  $|\theta| \lesssim 10^{-10}$ 

#### QCD Theta Term

- QCD has a parameter,  $\theta$ .
  - Controls QCD CP violation.

$$\mathcal{L}_{\text{QCD}} \ni \theta \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$
CP Violating

• Topological.

$$Q = \frac{1}{32\pi^2} \int d^4x \,\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \in \mathbb{Z}$$
$$e^{iS} \propto e^{iQ\theta}$$

•  $\theta$  can take any value in  $(-\pi,\pi]$ .

• Neutron EDM ≤ 3 10<sup>-26</sup>e•cm Baker et al., PRL 97, 131801 (2006) / hep-ex/0602020

• 
$$\implies$$
  $|\theta| \lesssim 10^{-10}$ 

Strong CP Problem: Why is  $\theta$  so small?

#### Axions

Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791

Couple to topological charge

$$\mathcal{L}_{\text{axions}} = \frac{1}{2} \left( \partial_{\mu} a \right)^2 + \left( \frac{a}{f_a} + \theta \right) \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

• Otherwise have shift symmetry.

Amenable to effective theory treatment

• PQ symmetry can break before or after inflation.

$$a \to a + \alpha$$

$$V_{\rm eff} \sim \cos\left(\theta + c\langle a \rangle\right)$$

$$m_a^2 f_a^2 = \left. \frac{\partial^2 F}{\partial \theta^2} \right|_{\theta=0}$$

#### Axions

Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791

Couple to topological charge

$$\mathcal{L}_{\text{axions}} = \frac{1}{2} \left( \partial_{\mu} a \right)^2 + \left( \frac{a}{f_a} + \theta \right) \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

• Otherwise have shift symmetry.

Amenable to effective theory treatment

• PQ symmetry can break before or after inflation.

$$a \rightarrow a + \alpha$$

 $\mathbf{v} = \mathbf{v}$ 

$$V_{\rm eff} \sim \cos\left(\theta + c\langle a \rangle\right)$$







### High temperature arguments imply $\chi$ vanishes as $T \rightarrow \infty$



# High temperature arguments imply χ vanishes as T→∞ Universe cools as it expands





### Axion Density $\frac{\rho(t)R^3}{m_a(t)} = \#$ axions in a fixed comoving volume

0

$$\rho(T_{\gamma}) = \rho(T_1) \frac{m_a(T_{\gamma})}{m_a(T_1)} \left(\frac{R(T_1)}{R(T_{\gamma})}\right)^3 \qquad T_{\gamma} = 2.73 \mathrm{K}$$

$$T_1 = T_1(f_a, \chi)$$
  $m_a(T_1) = \frac{\sqrt{\chi(T_1)}}{f_a}$ 

$$m_a(T_\gamma) = \frac{1}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} f_\pi m_\pi \quad \text{XPT}$$

R(T) from cosmology

 $\rho(T_1) = \frac{1}{2}m_a^2 f_a^2 \theta_1^2 \qquad \begin{array}{l} \theta_1 \text{ random in a (cosmologically) small} \\ \text{volume if PQ-breaking is after inflation.} \\ \left\langle \theta_1^2 \right\rangle = \frac{\pi^2}{3} \qquad \begin{array}{l} (\text{eg. BICEP?}) \end{array}$ 

$$\begin{array}{ll} \mbox{Axion Density} & \frac{\rho(t)R^3}{m_a(t)} = \# \mbox{ axions in a fixed comoving volume} \\ \\ \hline \rho(T_\gamma) = \rho(T_1) \frac{m_a(T_\gamma)}{m_a(T_1)} \left(\frac{R(T_1)}{R(T_\gamma)}\right)^3 & T_\gamma = 2.73 {\rm K} \\ \hline T_1 = T_1(f_a,\chi) & m_a(T_1) = \frac{\sqrt{\chi(T_1)}}{f_a} \\ \hline m_a(T_\gamma) = \frac{1}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} f_\pi m_\pi \quad {\rm XP} \\ \hline R(T) & \mbox{from cosmology} \\ \hline \rho(T_1) = \frac{1}{2} m_a^2 f_a^2 \theta_1^2 & \theta_1 \mbox{ random in a (cosmologically) small volume if PQ-breaking is after inflation.} \\ & \langle \theta_1^2 \rangle = \frac{\pi^2}{3} & (eg. \mbox{ BICEP?}) \\ \end{array}$$













#### CAVEAT

#### We study pure Yang-Mills, and not yet full QCD.

- Dramatically more efficient algorithms enable huge statistics and volumes, shorter autocorrelation times.
- $T_c$  is ~284 MeV, compared to 154 MeV in QCD.
- High temperature tends to suppress quark loops.
  - What counts as high temperature?
  - Unclear if this holds true for topological observables.
- Lower bound relies on late PQ breaking.
  - Early PQ breaking: the same lattice data constrains  $f_a$  (or  $m_a$ ) and initial  $\theta$ .

Berkowitz, Buchoff, and Rinaldi, arXiv:1505.07455

- SU(3) YM with Wilson plaquette action
- T between 1.2 and 2.5
- $N_{\sigma}$  between 48 and 144 (larger at higher T)
- $N_{\tau}$  either 6 or 8
- Between 14000 and 52000 measurements
  - Combined hot & cold starts
  - Cut of 2000 cfg.s for thermalization
  - 10 compound sweeps of 1 heatbath step and 8 over-relaxation steps

 $Q_{\mathbb{R}} = \frac{1}{32\pi^2} \sum_{x} e^{\mu\nu\rho\sigma} \Box_{\mu\nu} \Box_{\rho\sigma}$   $Q_{\mathbb{R}} = raw \text{ measurement}$   $Q_{\mathbb{Z}} = raw \text{ measurement}$ 

WF

 $Q_{OV}$ 

Wilson Flow

overlap

Berkowitz, Buchoff, and Rinaldi, arXiv:1505.07455

- SU(3) YM with Wilson plaquette action
- T between 1.2 and 2.5
- $N_{\sigma}$  between 48 and 144 (larger at higher T)
- $N_{\tau}$  either 6 or 8
- Between 14000 and 52000 measurements
  - Combined hot & cold starts
  - Cut of 2000 cfg.s for thermalization
  - 10 compound sweeps of 1 heatbath step and 8 over-relaxation steps

 $\frac{1}{32\pi^2}\sum \epsilon^{\mu\nu\rho\sigma}|$ raw measurement  $Q_{\mathbb{Z}}$ naïve rounding  $Q_a$ artifact corrected Lucini & Teper, hep-lat/0103027 globally fit del Debbio *et al.*, hep-th/0204125 Essentially no discretization or finite volume corrections  $Q_{OV}$ overlap Wilson Flow WF

Berkowitz, Buchoff, and Rinaldi, arXiv:1505.07455

- SU(3) YM with Wilson plaquette action
- T between 1.2 and 2.5
- $N_{\sigma}$  between 48 and 144 (larger at higher T)
- $N_{\tau}$  either 6 or 8
- Between 14000 and 52000 measurements
  - Combined hot & cold starts
  - Cut of 2000 cfg.s for thermalization
  - 10 compound sweeps of 1 heatbath step and 8 over-relaxation steps

 $\frac{1}{32\pi^2}\sum \epsilon^{\mu\nu\rho\sigma}$ raw measurement  $Q_{\mathbb{Z}}$ naïve rounding  $Q_a$ artifact corrected Lucini & Teper, hep-lat/0103027 globally fit del Debbio *et al.*, hep-th/0204125 Essentially no discretization or finite volume corrections

| $T/T_{c}$ | ß     | $a\sqrt{\sigma}$ | $N_{\pi}$ | $N_{\pi}$ | Nmaga  | cent     | central value $\gamma^{1/4}/T_{\rm c} + \delta \gamma^{1/4}/T_{\rm c}$ statistical error for |          |                 |                 |        |          |        |                  |                                   |
|-----------|-------|------------------|-----------|-----------|--------|----------|----------------------------------------------------------------------------------------------|----------|-----------------|-----------------|--------|----------|--------|------------------|-----------------------------------|
| 1/10      |       | wv0              | 117       | 1.0       | 1 meas | 2/=      |                                                                                              |          | $/ 1_{c} 1_{0}$ | $\lambda$ / $2$ | , .    |          |        |                  |                                   |
|           |       |                  |           |           |        |          | <u>R</u>                                                                                     | <u>X</u> |                 | <u>X</u>        | a      | <u>ر</u> | Xf     |                  |                                   |
| 1.2       | 6.001 | 0.2161           | 6         | 64        | 14000  | 0.3880 ( | 0.0012                                                                                       | 0.3814   | 0.0012          | 0.3871          | 0.0012 | 0.4192   | 0.0013 | $\mathbf{O}$     |                                   |
| 1.31      | 6.053 | 0.1979           | 6         | 48        | 15600  | 0.3495 ( | 0.0009                                                                                       | 0.3130   | 0.0009          | 0.3392          | 0.0010 | 0.3691   | 0.0011 | $Q_{\mathbb{R}}$ | raw measurement                   |
|           |       |                  |           | 64        | 36000  | 0.3424 ( | 0.0006                                                                                       | 0.3358   | 0.0006          | 0.3402          | 0.0007 | 0.3703   | 0.0007 |                  |                                   |
|           |       |                  |           | 80        | 14000  | 0.3426 ( | 0.0010                                                                                       | 0.3389   | 0.0010          | 0.3416          | 0.0010 | 0.3735   | 0.0011 |                  |                                   |
|           | 6.242 | 0.1484           | 8         | 64        | 33998  | 0.3634 ( | 0.0010                                                                                       | 0.3493   | 0.0010          | 0.3520          | 0.0010 | 0.3687   | 0.0010 |                  | naïve rounding                    |
|           |       |                  |           | 96        | 14000  | 0.3556 ( | 0.0015                                                                                       | 0.3533   | 0.0014          | 0.3537          | 0.0015 | 0.3703   | 0.0015 |                  | navorounaing                      |
| 1.4       | 6.095 | 0.1852           | 6         | 64        | 54000  | 0.3153 ( | 0.0005                                                                                       | 0.3077   | 0.0005          | 0.3095          | 0.0005 | 0.3370   | 0.0005 |                  |                                   |
| 1.5       | 6.139 | 0.1729           | 6         | 64        | 54000  | 0.2928 ( | 0.0005                                                                                       | 0.2833   | 0.0005          | 0.2814          | 0.0005 | 0.3068   | 0.0005 | $\cap$           | artifact corrected                |
| 1.6       | 6 182 | 0 1621           | 6         | 64        | 53998  | 0 2721 ( | 0.0005                                                                                       | 0 2587   | 0.0005          | 0 2568          | 0.0005 | 0.2799   | 0.0005 | $\Im a$          | di li dol contecteu               |
| 1.0       | 6 223 | 0.1021           | 6         | 64        | 24000  | 0.2121   | 0.0000                                                                                       | 0.2001   | 0.0000          | 0.2360          | 0.0000 | 0.2585   | 0.0000 |                  | Lucini & Teper, nep-lat/0         |
| 1.1       | 6 962 | 0.1020           | 6         | 64        | 24000  | 0.2000   | 0.0008                                                                                       | 0.2005   | 0.0008          | 0.2309          | 0.0008 | 0.2000   | 0.0008 | $\cap$           |                                   |
| 1.0       | 0.205 | 0.1441           | 0         | 04        | 24000  | 0.2343   | 0.0008                                                                                       | 0.2005   | 0.0009          | 0.2170          | 0.0008 | 0.2308   | 0.0008 | $ Q_f $          | globally fit                      |
|           | 0.1-1 | 0 1 0 0 0        | 0         | 80        | 32000  | 0.2320 ( | 0.0006                                                                                       | 0.2262   | 0.0006          | 0.2185          | 0.0006 | 0.2368   | 0.0006 | - 5              | del Debbio <i>et al.</i> , hep-th |
|           | 6.471 | 0.1080           | 8         | 96        | 14000  | 0.2306 ( | 0.0016                                                                                       | 0.2170   | 0.0017          | 0.2236          | 0.0015 | 0.2312   | 0.0016 |                  |                                   |
| 1.9       | 6.301 | 0.1365           | 6         | 64        | 24000  | 0.2175 ( | 0.0009                                                                                       | 0.1672   | 0.0011          | 0.2019          | 0.0008 | 0.2190   | 0.0009 |                  |                                   |
|           |       |                  |           | 80        | 34000  | 0.2164 ( | 0.0006                                                                                       | 0.2095   | 0.0006          | 0.2026          | 0.0006 | 0.2189   | 0.0006 |                  |                                   |
| 1.99      | 6.550 | 0.0973           | 8         | 64        | 14795  | 0.2013 ( | 0.0034                                                                                       | 0.1800   | 0.0036          | 0.1986          | 0.0029 | 0.2013   | 0.0034 |                  |                                   |
| 2.0       | 6.338 | 0.1297           | 6         | 48        | 15600  | 0.2040 ( | 0.0018                                                                                       | 0.1292   | 0.0027          | 0.1898          | 0.0016 | 0.2042   | 0.0018 |                  |                                   |
|           |       |                  |           | 64        | 25598  | 0.2032 ( | 0.0010                                                                                       | 0.1390   | 0.0014          | 0.1893          | 0.0009 | 0.2041   | 0.0010 |                  |                                   |
|           |       |                  |           | 80        | 26000  | 0.2014 ( | 0.0008                                                                                       | 0.1920   | 0.0008          | 0.1888          | 0.0007 | 0.2030   | 0.0008 |                  |                                   |
|           |       |                  |           | 96        | 14000  | 0.2004 ( | 0.0008                                                                                       | 0.1961   | 0.0008          | 0.1900          | 0.0008 | 0.2038   | 0.0009 |                  |                                   |
| 2.1       | 6.373 | 0.1235           | 6         | 80        | 24000  | 0.1880 ( | 0.0009                                                                                       | 0.1749   | 0.0009          | 0.1774          | 0.0008 | 0.1889   | 0.0009 |                  |                                   |
| 2.5       | 6.502 | 0.1037           | 6         | 128       | 14000  | 0.1497 ( | 0.0010                                                                                       | 0.1479   | 0.0010          | 0.1494          | 0.0008 | 0.1492   | 0.0010 |                  |                                   |
| 2.0       | 0.002 | 0.1001           | 0         | 1/1/      | 15707  | 0 1595 0 | 0 0008                                                                                       | 0 1512   | 0.0010          | 0 1/05          | 0.0006 | 0 1519   | 0.0010 |                  |                                   |
|           |       |                  |           | 144       | 10191  | 0.1020 ( | 0.0000                                                                                       | 0.1919   | 0.0000          | 0.1490          | 0.0000 | 0.1010   | 0.0000 |                  |                                   |

#### Finite Volume Effects



#### **Discretization Effects**

Berkowitz, Buchoff, and Rinaldi (arXiv:1505.07455), Kitano & Yamada (arXiv:1506.00370)



#### Best Lattice Results

Gattringer et al. (arXiv:hep-lat/0203013)



#### **Best Lattice Results**

Gattringer et al. (arXiv:hep-lat/0203013), Berkowitz, Buchoff, and Rinaldi, (arXiv:1505.07455)



#### **Best Lattice Results**

Gattringer et al. (arXiv:hep-lat/0203013), Berkowitz, Buchoff, and Rinaldi, (arXiv:1505.07455)



#### **DIGM Best Fit & Extrapolation**





Axion number fixed at T<sub>1</sub> when 3H ~ m

#### **Axion Production Ceases**



$$\begin{array}{ll} \mbox{Axion Density} & \frac{\rho(t)R^3}{m_a(t)} = \# \mbox{ axions in a fixed comoving volume} \\ \hline \rho(T_\gamma) = \rho(T_1) \frac{m_a(T_\gamma)}{m_a(T_1)} \left(\frac{R(T_1)}{R(T_\gamma)}\right)^3 & T_\gamma = 2.73 {\rm K} \\ \hline T_1 = T_1(f_a,\chi) & m_a(T_1) = \frac{\sqrt{\chi(T_1)}}{f_a} \\ \hline m_a(T_\gamma) = \frac{1}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} f_\pi m_\pi \quad \mbox{ xPT} & \mbox{ Rely on our lattice calculation} \\ \hline R(T) & \mbox{ from cosmology} \\ \hline \rho(T_1) = \frac{1}{2} m_a^2 f_a^2 \theta_1^2 & \theta_1 \mbox{ random in a (cosmologically) small volume if PQ-breaking is after inflation.} \\ & \langle \theta_1^2 \rangle = \frac{\pi^2}{3} & \end{tabular} \end{array}$$









Berkowitz, Buchoff, and Rinaldi, arXiv:1505.07455, Simon Mages' talk 15 July 18:10



#### **Conclusions & Outlook**

- PQ symmetry:
  - cleans up the Strong CP problem
  - provides a plausible, largely unconstrained DM candidate: the axion.
- Axion searches will search large swaths of interesting parameter space soon.
- Power law (DIGM-inspired) fits outstandingly to pure glue at high temperature.

## Lattice QCD can provide important nonperturbative input for calculating $\Omega_a$

A SALAR CONTRACTOR

The Economist, 19 Dec 2006

#### Future Steps

- Measure higher moments? May be able to get χ<sub>4</sub>, χ<sub>6</sub>. T=0: Cé, Consonni, Engle & Giusti, arXiv:1506.06052
- Incorporate quarks
- Move to Wilson Flow definition
- Explore fixed topology methods / open boundary conditions at high T. Aoki *et al.*, arXiv:0707.0396v2 Lüscher & Schæfer, arXiv:1105.4749
- Finite  $\theta$ :
  - Imaginary-θ has no sign problem
  - Real, finite  $\theta$  may be amenable to Langevin methods

#### Comparison with subsequent work

