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Overview

» Overview of equilibrium properties
transition temperature, thermodynamics, hadron resonance gas model,
static screening masses

» News on the Columbia plot
Order of the thermal transition as a function of (1,4, ms)

» Near-equilibrium (real-time) properties
pion quasiparticle, heavy-quark momentum diffusion coefficient,
vector channel for light quarks, nucleon channel, quarkonium
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Motivation

Strongly interacting matter at temperatures 7' = 100 — 500 MeV
» probed in heavy-ion collisions

> state of matter for the first microsecond after Big Bang
Thermal physics:
(A) = %Tr{e_BHA}, Z = Tr {e )

Matsubara formalism particularly well-suited for equilibrium physics:
path integral formulation

> imaginary time direction of length h/(kgT).

> boson fields have periodic, fermion fields antiperiodic boundary conditions.

— particularly well suited for lattice QCD: Z = [ DU Dy Dy e™5.
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QCD phase diagram at pup ~ 0
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» freezeout curve: heavy-ion collision phenomenology.
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Semi-quantitative expectations for QCD at 7" > 0
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Fig. 1. The fermion condensate as a function of temperature o 555 35 5
for three quark flavours of equal mass. The various curves
correspond to different choices of the box size L and of the
quark mass — patameterized through the corresponding val-
ue of M. A includes the two-loop contribution (2);B,...,E
are given at one-loop accuracy (24). A and B: M, =0, L
CM, = 135 MeV, L =x; D:Mﬂ, =135MeV,L =25 fm;
E: M, =135MeV,L = 1/T.

FIG. 7. Crude estimate of sound velocity versus tem-
perature.

Chiral condensate Speed of sound

Gasser, Leutwyler, PLB 184:83, 1987 Bjorken PRD27:140-151, 1983
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The pseudocritical temperature at physical (u,d, s) quark masses

A Inflection point of m((yp)|8) /T
Staggered fermions: 155(2)(3)MeV BW 1005.3508

A\ From the chiral susceptibility:
Staggered fermions: 147(2)(3)MeV  BW 1005.3508
154(8)(1) MeV HotQCD, 1111.1710

Domain wall fermions: 155(1)(8) MeV HotQCD, 1402.5175

» Good agreement among staggered fermion calculations

> Now also good agreement with domain-wall fermions
(and soon Wilson fermions?).
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Deconfinement: does it coincide with chiral restoration?
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> Not a completely sharp question.

\{

practically at the same temperature as chiral restoration.

> strangeness fluctuations: rise delayed by about AT = 20MeV.

v

Successful predictions of the hadron resonance gas model (HRG).

Fig. from S. Borsanyi et al. 1112.4416

150 200 250 300 350 400

Light-quark number susceptibility: suggests that deconfinement occurs
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Thermodynamic potentials

nen-int. limit
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Fig. from review by Soltz et al. 1502.02296

> at T = 260MeV, puorm = p/ps ~ 1/2:
far from weakly interacting quarks and gluons.

> (e —3p)/[3(e+p)] = 1/3: large departure from a scale-invariant system.

» HRG model works well up to 7" = 160 MeV.
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The ‘Columbia plot’
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> nature of the thermal phase transition as a function of the quark masses

> the situation at small m,, 4 is not settled yet; e.g. the phase transition in
the massless Ny = 2 theory could be 1st order.

Fig. from review by Ding, Karsch & Mukherjee 1504.05274
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The pseudocritical temperature as a function of the quark masses
Using 7o = 0.50000fm for the purpose of the comparison.

Pure gauge theory (1°*" order, Z(3) center symmetry):
T. = 294(2)MeV  Francis et al. 1503.05652

Ny =2 QCD at m, > m-™* (crossover):

e O(a) improved Wilson, N = 16 [Brandt et al. 1310.8326]
mx = 295 MeV T. = 211(5) MeV

mx ~ 220 MeV T, = 193(7)MeV

e Twisted-mass QCD, continuum, N, < 12 [Burger et al. 1412.6748]
my = 333 MeV T. = 180(12) MeV
Some tension here; the authors use rg = 0.462fm = quote T. = 195(13)MeV.

N; =2+ 1 O(a) improved Wilson at m, > mE™* (crossover)
continuum results [Borsanyi et al. 1504.03676]
downward trend of T, clearly seen from the chiral condensate.
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Expanding one’s horizons

Conjecture

QGP

Does T. gradually become smaller as Ny is
increased until the conformal window is reached?

Lombardo, Miura, Nunes da Silva, Pallante 1506.05946; L
1507.00375 Kogut & Sinclair (sextet fermions)

NB. larger Ny gives more statistical weight to
hadronic

baryons in the HRG o Loese
0

conformal
window

N;/ N

» study in pure gauge theory 2 < N, < 8:
® Pnorm (SU(Ne),x) = (p/pss)(T = zT¢) is almost indep. of N, for x > 1.1
= the multiplicity of the physical degrees of freedom o nb. gluons
® Pnorm (SU(N:),1.6) = 1/2
Bringoltz & Teper hep-lat/0506034; Panero 0907.3719; Datta & Gupta 1006.0938

> exceptional gauge groups, G(2)
e color singlet asymptotic states, no center symmetry
® Pnorm (G(2), ) is consistent with prorm (SU(Ne), x)
Bruno et al. 1409.8305; see also Pepe & Wiese hep-lat/0610076, Cossu et al. 0709.0669.
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High-precision thermodynamics in pure gauge theory: low-T
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> good agreement between ‘glueball gas’ model with spectrum taken from
the closed Nambu-Goto string up to very close to the phase transition.

» SU(2) has 'fewer states’: only charge conjugation + states.

Fig. from Caselle et al. 1505.01106; see also HM, 0905.4229 and Borsanyi et al. 1204.6184
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High-precision thermodynamics in SU(3) gauge theory: high-T
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» use of shifted boundary conditions [see Giusti & HM 1211.6669]

» small, but statistically significant differences between recent calculations
(accuracy =~ 0.5%)

Giusti, Pepe, preliminary.
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Static screening masses in light quark sector at high T’
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» pseudoscalar mass remains below 27T, vector rises above around 1" = 27T,

» weak coupling prediction: m /27T =1+ cg® >0

Laine, Vepsalainen hep-ph/0311268.

Figs. from Cheng et al. 1010.1216 (N = 2 + 1, p4 staggered); see also S. Gupta & Karthik
1302.4917 (N; = 2 staggered); Brandt et al. (Ny = 2, Wilson) 1310.8326; M. Miiller et al.
1311.3889 quenched. Talks about flavor-singlet screening masses: J. Weber and A. Pasztor.
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Portrait of QCD at finite temperature

From the lattice:

» low-T" phase: hadron resonance gas model describes equilibrium properties
very well

> chiral + deconfinement crossover transition around 7' = 155MeV

> high-T phase: multiplicity of degrees of freedom consistent with
quarks+gluons

> ...but many quantities far from weak-coupling predictions at least until
T =~ 2.5T..

In addition, heavy-ion phenomenology points to a medium with very small
shear viscosity/entropy density in the range T, < T < 2.5T, e.g.

Jsn 0.12 RHIC
M5~ 02 ALICE

Gale, Jeon, Schenke 1301.5893; White Paper 1502.02730

All this indicates that the partonic degrees of freedom are strongly correlated.
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News on the Columbia plot at this conference
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Size of the 1st order region in lower-left corner of the Columbia plot

> in the SU(3) chiral limit, 3 strong arguments that the transition is 1st
order [Pisarski Wilczek, PRD29 (1984) 338]
» confirmed by lattice simulations, but huge variations on m&* among

crit

Ny =4 and N; = 6 results: finer lattice spacing ~~ lower mj;
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> Published result of continuum extrapolation from finite-size scaling at
Ny =6 and 8: mZ™ = 304(7)(14)(7)MeV (O(a) improved Wilson, Iwasaki
gauge action, scale setting with %g)
> likely to be reduced further at larger NV;...to be followed.
See X.-Y. Jin et al. 1411.7461 and talk by Y. Nakamura. Curvature of critical surface: S. Takeda
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Size of the 1st order region (Il)
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> ‘infinite-volume' method with HISQ action at N; =6
» data down to m, = 80MeV
» fit with Z(2) exponents: mS™* < 50MeV.

Talk by H.-T. Ding (Bielefeld-BNL-CCNU collaboration).
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Order of the phase transition in the m, 4 — 0 limit

Alternative scenario for the Columbia plot:
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Order of the phase transition in the m, 4 — 0 limit at m, = m2"™*
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» HISQ action, Nt = 6: no sign of 1lst order transition at m,. = 80MeV
> f(mua, T) = W2 fine(2) + regular, z = t/h'/5°,
t=(T—1T.)/Tc, h X My,q/ms
> good fit obtained with O(2) exponents (taste splitting);
well consistent with the standard scenario.

HotQCD 1312.0119 + 1302.5740 and Talk by H.-T. Ding.
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Order of the phase transition in the m, 4 — 0 limit in Ny =2 QCD
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> large cutoff effects on coarse Wilson ensembles.

Talk by Ch. Pinke. Method based on imaginary chemical potential: Bonati et al., 1408.5086.
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Near-equilibrium properties
» the pion quasiparticle in the low-temperature phase of QCD
> the heavy-quark momentum diffusion constant
» spectral functions in the vector channel
> the nucleon channel

» quarkonium.
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Formalism

e Relation between the Euclidean correlator and the spectral function:

Gla.p) = [ d'a e ™ (@)aO) = [ G2 ol 2 EE L0,

e Relation of the spectral function to Wightmann correlator:
plw,p)=(1—e" / dt/d3 fwhmipx Tr{e B j(t,x) J(0)}.

NB. J(t) = et jeiHt,

e Analogous object to the ‘hadronic tensor’' in "N — X:

W (4,) 22/d4x e (N () J (O)V).

* inverse problem for p(w, p)
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One conceptual point

e Inserting a complete set of states in Euclidean correlator:

1 e
G(z0,p) = 5 D (]I (p)|m)[* = (7702 m e~

NB. the |n) are eigenstates of the Hamiltonian.

e Correspondingly, formal expression for the spectral function

p(w) = 2 sinh(80/2) 3 nlJ(p) ) ¢ EFE 2500 — (B~ B).

n,m

e These expressions are useful to prove formal relations, such as the connection
with the Minkowski-space correlators.

e ... but what we are after are the collective excitations of the medium
(= frequency-poles of the correlator in infinite volume), which depend on the
temperature and are not related in a simple way to the |n), e.g.

> hydrodynamic excitations (associated with conserved currents): have to be there.
> quasiparticle = pole at (w = wp) with Im(wp) < Re(wp);
dwp .. . L —
vg = ﬁ is its group velocity. There are media with no quasiparticles.
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Motivation: expected thermal changes in spectral functions

Isoscalar vector channel: spectral fct. of J; = %(ﬂ%ﬂ + dvid)

7

SND e*e >’ ——
6 || Wk coupl T=260MeV
N=4 SYM A=00

intercept=3 s D/T

tanh(o / 2T) py(@,T) / o

0 | 7 ! .
0 0.2 0.4 0.6 0.8 1

o/ GeV

> presence of weakly coupled quasiparticles = transport peak at w = 0;
is it really there at T' =~ 260MeV ?

SND hep-ex/0305049 D = diffusion coefficient; x s = static susceptibility.
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Some basics on the inverse problem

Linearity: ;Ci(Q)G(ti) :/O dw p(w §=: W
g(@,w)

> choose the coefficients ¢;(@) so that the ‘resolution function’ g(&z,w) is as
narrowly peaked around a given frequency @ as possible
(idea behind the Backus-Gilbert method, [used in Robaina et al. 1506.05732])

0.25 T T T

0.2

0.15 |

Resolution function at w = 4
for Ny =24, t;/a =5,...12.

Té(@,w)

0.05 |




Some basics on the inverse problem

Linearity: Z (@) G(t:) = /Ooo dw p(w) Z ci(@) %

i=1

&)

(@,w)

» For given {t;}, a certain resolution in frequency can be achieved;
however, the required c; are strongly oscillating (ill-posed problem)

» = finite accuracy of data further limits the resolution

» if you know a priori that the spectral function is slowly varying on the
scale Aw ~ T the problem is again well posed.

> problem: whether there is a narrow transport peak or narrow quasiparticle
peaks is precisely what we want to know.

Methods used: fit ansatz; maximum entropy method (MEM); new Bayesian method [Burnier &
Rothkopf 1307.6106], talk by S. Kim; stochastic methods, talks by H. Ohno and H.-T. Shu.
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The pion quasiparticle in the low-temperature phase

» Chiral symmetry is spontaneously broken for T < T.: —(1%)) > 0.

» Goldstone theorem = a divergent spatial correlation length exists in the
limit m — 0.

> somewhat less obvious: a massless real-time excitation exists, the pion
quasiparticle.

» dispersion relation: wp = u\/m2 + p? + ...; m, = screening mass(!)
[Son and Stephanov, PRD 66, 076011 (2002)]

> pion dominates Euclidean two-point function of Ag and of P at o = 3/2

T=0: pion mass = 267(2) MeV
e N
T = 169MeV : quasiparticle mass = 223(4)MeV screening mass = 303(4)MeV.

Implications for the hadron resonance gas model!?

Robaina et al. 1406.5602; 1506.05732
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Pion quasiparticle: test of the dispersion relation
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> also the residue in two-point function of Ay and of P are predicted

> dispersion relation & residue compatible with correlators at small p # 0.

Gatao,p) = 5 [ o™ (a3 4300) = [T 52 oo AT 20,

Ansatz : p”(w,p) = a1(p)d(w — wp) + az2(p)(1 — e~ “?)0(w — ¢).

24 x 64> thermal ensemble, T = 169MeV, My |r=0 = 270MeV 1506.05732.
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Heavy quark momentum diffusion coefficient

(Re'Tr (U(B, 7)gEx(r,0)U (t,0)9Ex (0,0)) ) /oo do ) coshlu(8/2— 1)
—3 (ReTrU(B,0)) sinh[w/3/2]

e color parallel transporters U (t2,t1) are propagators of static quarks

e (Lorentz) force-force correlator on the worldline of the quark.

G(r) =

4 -
Gim;:b‘lG‘norm
T
35 k= lim —p(w), D =2T?%/k.
w—0 w
3
25 . I
NNLO calculation available:
2 p(w) = smooth function “ = g2uw3.
1.5 continuum  —
lcf'l"=2.5(4! —
1 A"NNLDRJ—E'L% - Kaczmarek et al. 1409.3724; see also
05 ¥ /2T R Caron-Huot, Laine, Moore 0901.1195;
— HM 1012.0234; Banerjee et al. 1109.5738;
0 ‘ . . T
0 0.1 0.2 0.3 0.4 0.5
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The isovector vector channel

g Mg = May,d —
- i L ! ‘ 1.8 - Ap(w) B21anh(wp/2)
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> shift of spectral weight from the p to low frequency region as T increases.

Left: Aarts et al. ((Ny = 2+ 1), also strange current included) 1412.6411;
Right: Francis et al. (Ny = 2), 1212.4200 and in preparation; see also talk by Fl. Meyer.
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Spectral sum rules for Ap(w, k,T) = p(w,k,T) — p(w, k,0)

/ dwwApL(w,k,T) = o0, VEk [1107.4388]
—oo
° dw
/ WAL, ks T) = xs — ruk® + O(Jk[Y),
oo W
g
/ AT,k T) = rek?+O(K|Y),
oo W
S _ T
/ dw w Ap (w, k,T) = —m{p)]| vk [1406.5602]

3 interpretation of k; and k¢ in terms of screening/antiscreening

of electric probe charges and currents placed in the medium Brandt et al. 1310.5160
1 ik > coshw(B/2 — zo)
= [ a3 ke (o) VEo)) = / dw pE (w, k, T) — 222 207
3 Fee e 0@V o) = [ dopbo k) SRS
kik ik o coshw(B/2 — zo)
_1(s. _ MM 3 ikx [y/a a _ T coshw(B/2 —xo)
Hou= 55t [z et weaveo) = [T dwpfo k) CREPEI0),
1 ik i cosh(w(B/2 — z0))
= [ d*z e (AF(0)A] = / dw p (w, k, T) —— =2
3 et @A) = [T dopkt k) SR
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The diffusion coefficient D

T/T.
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> lattice results consistent with a strongly coupled scenario

> but a narrow transport peak cannot presently be excluded, which would
yield larger D.

Aarts et al. 1412.6411.
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Fermionic correlators new!

e Nucleon interpolating operator (parity +): On4 = 3(1+70) €ave(uaCysdy)ue

Gao) = [ % (On+(@) On-(0)

| o e
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Quarkonium in the high-temperature phase

> for mq large, QQ tightly bound — survives as a quasiparticle in medium
» but Debye screening of QQ potential and Landau damping =
Im(wp) grows and its residue (wrt ¢-yc) is reduced.

> at what temperature different éc and bb ‘states’ ‘melt’ provides a
thermometer in heavy-ion collisions; p-wave bound states melt before
before s-wave bound states etc.

» formulate the problem in NRQCD; advantages:
© G =[5, 2 e pw)
e p(w) softer in the UV than in the relativistic theory
e p(w) does not contain a transport peak.

Bottomomium: NRQCD and pNRQCD studies

e ground state T survives at least up to 27, xp1 melts immediately above T,
[Harris et al. 1402.6210, Ny = 2 + 1, m, = 400MeV].

e Kim et al. [1409.3630] find xp1 survives for some time.

Charmonium: studies in relativistic formulation, recently also in NRQCD.

Talks by S. Kim, A. lkeda, H. Ohno and H.-T. Shu.
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Interpretation of screening masses: static and non-static
Consider perturbating the Hamiltonian,
o) = 1~ [ d'y o(t.9) I v)
with the external perturbation given by
o(ty) = d(y)e0(—1),  w>0.

Linear response =
5(J(t=0,2)) = G (wn, ),
| —

Euclidean corr.

for w = w, = 27Tn.

" Correlation length in Matsubara sector
05 / wn = length scale over which a

perturbation with the time dependence
e“n' is screened (n > 0).

oft)
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Screening masses at high temperatures

Weak-coupling picture of flavor-non-singlet screening masses:

v

fermions have an effective mass of at least 71" = dimensional reduction

> they form non-relativistic, 2+1d bound states of size O(mp")
Laine, Vepsalainen hep-ph/0311268

> expect bound state to be described by a Schrodinger equation in 2+1d.

> Non-static sector: potential has a connection with an effective potential
used in the calculation of the dilepton production rate

[Aurenche, Gelis, Moore, Zakaret hep-ph/0211036; Caron-Huot 0811.1603;
Panero, Rummukainen, Schafer 1307.5850].
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Vector screening masses: lattice vs. EFT
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Satisfactory agreement between lattice QCD and the EFT predictions.

Brandt et al. 1404.2404; N; = 16 and N; = 12, Ny = 64; m,|r= 0 = 270MeV
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Non-static screening masses and transport coefficients

Linear response along with a constitutive equation for the vector current J =

w Dk‘2 wp—0 W
GJoJo ok n,k—=0  Xs 2 wn- n
E (w ’ ) wn + Dk2

Xs = static susceptibility, D = diffusion coefficient, E(w,,) = screening mass in sector w,

1.2 Intercept=1/(21T D) 1
3 1)
= Ad
8 o8 S/CFT
&= In the limit " — oo, extrapolating
c . .
s 06 1 the screening masses in the lowest
S o4 ... Weak coupyin. | Matsubara sectors to w, = 0 gives
2 "o, ing the correct result, 1/(T D) = 0.
~ 02| 'nn-....@,J
kinetic theory |
0 L L
0 1 2
/21T

Brandt, Francis, Laine, HM 1408.5917; Kinetic theory: Arnold, Moore & Yaffe hep-ph/0111107
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Conclusion

» many equilibrium quantities known in the continuum limit
(mostly from staggered fermion calculations, now universality
checks with other actions)

» new impetus to put the topology of the Columbia plot on solid
footing, and to be more quantitative.

» progress in near-equilibrium quantities
o N; =~ 24, few-permille precision on correlation functions, quenched
continuum results
e theory support (effective field theory and sum rules, advantageous

reformulation of the problem,...)

Topics not covered: external magnetic fields (K. Szabo LAT13);
Ua(1) aspects; many talks on finite-density at this conference.

Harvey Meyer QCD at non-zero temperature from the lattice
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