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Overview

I Overview of equilibrium properties
transition temperature, thermodynamics, hadron resonance gas model,

static screening masses

I News on the Columbia plot
Order of the thermal transition as a function of (mu,d,ms)

I Near-equilibrium (real-time) properties
pion quasiparticle, heavy-quark momentum diffusion coefficient,

vector channel for light quarks, nucleon channel, quarkonium
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Motivation

Strongly interacting matter at temperatures T = 100− 500 MeV

I probed in heavy-ion collisions

I state of matter for the first microsecond after Big Bang

Thermal physics:

〈A〉 =
1

Z
Tr {e−βHA}, Z = Tr {e−βH}

Matsubara formalism particularly well-suited for equilibrium physics:
path integral formulation

I imaginary time direction of length ~/(kBT ).

I boson fields have periodic, fermion fields antiperiodic boundary conditions.

−→ particularly well suited for lattice QCD: Z =
∫
DU Dψ̄Dψ e−S .
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QCD phase diagram at µB ' 0
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I freezeout curve: heavy-ion collision phenomenology.
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Semi-quantitative expectations for QCD at T > 0

Chiral condensate Speed of sound

Gasser, Leutwyler, PLB 184:83, 1987 Bjorken PRD27:140-151, 1983
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The pseudocritical temperature at physical (u, d, s) quark masses

4 Inflection point of m(〈ψ̄ψ〉|T0 )/T 4:

Staggered fermions: 155(2)(3)MeV BW 1005.3508

4 From the chiral susceptibility:

Staggered fermions: 147(2)(3)MeV BW 1005.3508

154(8)(1) MeV HotQCD, 1111.1710

Domain wall fermions: 155(1)(8) MeV HotQCD, 1402.5175

I Good agreement among staggered fermion calculations

I Now also good agreement with domain-wall fermions
(and soon Wilson fermions?).
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Deconfinement: does it coincide with chiral restoration?

I Not a completely sharp question.

I Light-quark number susceptibility: suggests that deconfinement occurs
practically at the same temperature as chiral restoration.

I strangeness fluctuations: rise delayed by about ∆T = 20MeV.

I Successful predictions of the hadron resonance gas model (HRG).

Fig. from S. Borsanyi et al. 1112.4416
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Thermodynamic potentials

Fig. from review by Soltz et al. 1502.02296

I at T = 260MeV, pnorm ≡ p/pSB ≈ 1/2:
far from weakly interacting quarks and gluons.

I (e− 3p)/[ 3
4
(e+ p)] ≈ 1/3: large departure from a scale-invariant system.

I HRG model works well up to T = 160 MeV.
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The ‘Columbia plot’

I nature of the thermal phase transition as a function of the quark masses

I the situation at small mu,d is not settled yet; e.g. the phase transition in
the massless Nf = 2 theory could be 1st order.

Fig. from review by Ding, Karsch & Mukherjee 1504.05274
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The pseudocritical temperature as a function of the quark masses

Using r0 = 0.50000fm for the purpose of the comparison.

Pure gauge theory (1st order, Z(3) center symmetry):
Tc = 294(2)MeV Francis et al. 1503.05652

Nf = 2 QCD at mπ > mphys
π (crossover):

• O(a) improved Wilson, Nτ = 16 [Brandt et al. 1310.8326]

mπ = 295 MeV Tc = 211(5) MeV
mπ ≈ 220 MeV Tc = 193(7)MeV

• Twisted-mass QCD, continuum, Nτ ≤ 12 [Burger et al. 1412.6748]

mπ = 333 MeV Tc = 180(12) MeV
Some tension here; the authors use r0 = 0.462fm ⇒ quote Tc = 195(13)MeV.

Nf = 2 + 1 O(a) improved Wilson at mπ > mphys
π (crossover)

continuum results [Borsanyi et al. 1504.03676]

downward trend of Tc clearly seen from the chiral condensate.
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Expanding one’s horizons

Does Tc gradually become smaller as Nf is
increased until the conformal window is reached?

Lombardo, Miura, Nunes da Silva, Pallante 1506.05946;

1507.00375 Kogut & Sinclair (sextet fermions)

NB. larger Nf gives more statistical weight to

baryons in the HRG
 0

 0

T

Nf / Nc

Conjecture

hadronic
 phase

QGP

conformal
 window

I study in pure gauge theory 2 ≤ Nc ≤ 8:
• pnorm(SU(Nc), x) ≡ (p/pSB)(T = xTc) is almost indep. of Nc for x > 1.1
⇒ the multiplicity of the physical degrees of freedom ∝ nb. gluons
• pnorm(SU(Nc), 1.6) ≈ 1/2

Bringoltz & Teper hep-lat/0506034; Panero 0907.3719; Datta & Gupta 1006.0938

I exceptional gauge groups, G(2)
• color singlet asymptotic states, no center symmetry
• pnorm(G(2), x) is consistent with pnorm(SU(Nc), x)
Bruno et al. 1409.8305; see also Pepe & Wiese hep-lat/0610076, Cossu et al. 0709.0669.
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High-precision thermodynamics in pure gauge theory: low-T

I good agreement between ‘glueball gas’ model with spectrum taken from
the closed Nambu-Goto string up to very close to the phase transition.

I SU(2) has ‘fewer states’: only charge conjugation + states.

Fig. from Caselle et al. 1505.01106; see also HM, 0905.4229 and Borsanyi et al. 1204.6184
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High-precision thermodynamics in SU(3) gauge theory: high-T
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G. Boyd et al., Nucl.Phys. B469 (1996) 419
S. Borsanyi et al., JHEP 1207 (2012) 056

L. Giusti and M. Pepe, in preparation
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I use of shifted boundary conditions [see Giusti & HM 1211.6669]

I small, but statistically significant differences between recent calculations
(accuracy ≈ 0.5%)

Giusti, Pepe, preliminary.
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Static screening masses in light quark sector at high T

pseudoscalar vector

I pseudoscalar mass remains below 2πT , vector rises above around T = 2Tc

I weak coupling prediction: m/2πT = 1 + c g2, c > 0
Laine, Vepsalainen hep-ph/0311268.

Figs. from Cheng et al. 1010.1216 (Nf = 2 + 1, p4 staggered); see also S. Gupta & Karthik

1302.4917 (Nf = 2 staggered); Brandt et al. (Nf = 2, Wilson) 1310.8326; M. Müller et al.

1311.3889 quenched. Talks about flavor-singlet screening masses: J. Weber and A. Pasztor.
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Portrait of QCD at finite temperature

From the lattice:

I low-T phase: hadron resonance gas model describes equilibrium properties
very well

I chiral + deconfinement crossover transition around T = 155MeV

I high-T phase: multiplicity of degrees of freedom consistent with
quarks+gluons

I . . . but many quantities far from weak-coupling predictions at least until
T ≈ 2.5Tc.

In addition, heavy-ion phenomenology points to a medium with very small
shear viscosity/entropy density in the range Tc . T . 2.5Tc, e.g.

η/s ≈
{

0.12 RHIC
0.2 ALICE

Gale, Jeon, Schenke 1301.5893; White Paper 1502.02730

All this indicates that the partonic degrees of freedom are strongly correlated.
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News on the Columbia plot at this conference
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Size of the 1st order region in lower-left corner of the Columbia plot
I in the SU(3) chiral limit, ∃ strong arguments that the transition is 1st

order [Pisarski Wilczek, PRD29 (1984) 338]

I confirmed by lattice simulations, but huge variations on mcrit
π among

Nt = 4 and Nt = 6 results: finer lattice spacing  lower mcrit
π

I Published result of continuum extrapolation from finite-size scaling at
Nt = 6 and 8: mcrit

π = 304(7)(14)(7)MeV (O(a) improved Wilson, Iwasaki

gauge action, scale setting with t0)

I likely to be reduced further at larger Nt. . . to be followed.

See X.-Y. Jin et al. 1411.7461 and talk by Y. Nakamura. Curvature of critical surface: S. Takeda
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Size of the 1st order region (II)

I ‘infinite-volume’ method with HISQ action at Nt = 6

I data down to mπ = 80MeV

I fit with Z(2) exponents: mcrit
π . 50MeV.

Talk by H.-T. Ding (Bielefeld-BNL-CCNU collaboration).
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Order of the phase transition in the mu,d → 0 limit

Alternative scenario for the Columbia plot:

Ways to address the question: take mu,d → 0 at ms = mphys
s or at ms =∞.
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Order of the phase transition in the mu,d → 0 limit at ms = mphys
s

I HISQ action, Nt = 6: no sign of 1st order transition at mπ = 80MeV

I f(mu,d, T ) = h1+1/δfsing(z) + regular, z ≡ t/h1/βδ,
t = (T − Tc)/Tc, h ∝ mu,d/ms

I good fit obtained with O(2) exponents (taste splitting);
well consistent with the standard scenario.

HotQCD 1312.0119 + 1302.5740 and Talk by H.-T. Ding.
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Order of the phase transition in the mu,d → 0 limit in Nf = 2 QCD
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I large cutoff effects on coarse Wilson ensembles.

Talk by Ch. Pinke. Method based on imaginary chemical potential: Bonati et al., 1408.5086.
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Near-equilibrium properties

I the pion quasiparticle in the low-temperature phase of QCD

I the heavy-quark momentum diffusion constant

I spectral functions in the vector channel

I the nucleon channel

I quarkonium.
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Formalism

• Relation between the Euclidean correlator and the spectral function:

G(x0,p) =

∫
d3x e−ip·x 〈J(x)J(0)〉 ?=

∫ ∞
0

dω

2π
ρ(ω,p)

cosh[ω(β/2− x0)]

sinh[ωβ/2]
.

• Relation of the spectral function to Wightmann correlator:

ρ(ω,p) = (1− e−βω)

∫ ∞
−∞

dt

∫
d3x eiωt−ip·x

1

Z
Tr {e−βĤ Ĵ(t,x) Ĵ(0)}.

NB. Ĵ(t) = eiĤtĴ e−iĤt.

• Analogous object to the ‘hadronic tensor’ in γ∗N → X:

Wµν(q, p) =
1

2

∑
σN

∫
d4x e−iq·x 〈N |Ĵµ(x) Ĵν(0)|N〉.

? inverse problem for ρ(ω,p)
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One conceptual point

• Inserting a complete set of states in Euclidean correlator:

G(x0,p) =
1

Z

∑
n,m

|〈n|J(p)|m〉|2 e−(β−x0)Eme−Enx0

NB. the |n〉 are eigenstates of the Hamiltonian.

• Correspondingly, formal expression for the spectral function

ρ(ω) =
4π

Z
sinh(βω/2)

∑
n,m

|〈n|J(p)|m〉|2 e−β(En+Em)/2δ(ω − (En − Em)).

• These expressions are useful to prove formal relations, such as the connection
with the Minkowski-space correlators.

• . . . but what we are after are the collective excitations of the medium
(= frequency-poles of the correlator in infinite volume), which depend on the
temperature and are not related in a simple way to the |n〉, e.g.

I hydrodynamic excitations (associated with conserved currents): have to be there.

I quasiparticle = pole at (ω = ωp) with Im(ωp) . Re(ωp);

vg =
dωp

d|p| is its group velocity. There are media with no quasiparticles.
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Motivation: expected thermal changes in spectral functions

Isoscalar vector channel: spectral fct. of Ji = 1√
2
(ūγiū+ d̄γid)
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I presence of weakly coupled quasiparticles ⇒ transport peak at ω = 0;
is it really there at T ≈ 260MeV ?

SND hep-ex/0305049 D = diffusion coefficient; χs = static susceptibility.
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Some basics on the inverse problem

Linearity:

n∑
i=1

ci(ω̄)G(ti) =

∫ ∞
0

dω ρ(ω)

n∑
i=1

ci(ω̄)
cosh[ω(β/2− ti)]

sinh[ωβ/2]︸ ︷︷ ︸
δ̂(ω̄,ω)

I choose the coefficients ci(ω̄) so that the ‘resolution function’ δ̂(ω̄, ω) is as
narrowly peaked around a given frequency ω̄ as possible
(idea behind the Backus-Gilbert method, [used in Robaina et al. 1506.05732])

λ = 0.002, ω̄/T = 5
λ = 0.01, ω̄/T = 5
λ = 0.5, ω̄/T = 5
λ = 1, ω̄/T = 4

ω/T

T
δ̂(
ω̄
,ω

)

121086420

0.25

0.2

0.15

0.1

0.05

0

Resolution function at ω̄ = 4
for Nt = 24, ti/a = 5, . . . 12.
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Some basics on the inverse problem

Linearity:

n∑
i=1

ci(ω̄)G(ti) =

∫ ∞
0

dω ρ(ω)

n∑
i=1

ci(ω̄)
cosh[ω(β/2− ti)]

sinh[ωβ/2]︸ ︷︷ ︸
δ̂(ω̄,ω)

I For given {ti}, a certain resolution in frequency can be achieved;
however, the required ci are strongly oscillating (ill-posed problem)

I ⇒ finite accuracy of data further limits the resolution

I if you know a priori that the spectral function is slowly varying on the
scale ∆ω ∼ T the problem is again well posed.

I problem: whether there is a narrow transport peak or narrow quasiparticle
peaks is precisely what we want to know.

Methods used: fit ansatz; maximum entropy method (MEM); new Bayesian method [Burnier &

Rothkopf 1307.6106], talk by S. Kim; stochastic methods, talks by H. Ohno and H.-T. Shu.
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The pion quasiparticle in the low-temperature phase

I Chiral symmetry is spontaneously broken for T < Tc: −〈ψ̄ψ〉 > 0.

I Goldstone theorem ⇒ a divergent spatial correlation length exists in the
limit m→ 0.

I somewhat less obvious: a massless real-time excitation exists, the pion
quasiparticle.

I dispersion relation: ωp = u
√
m2
π + p2 + . . . ; mπ = screening mass(!)

[Son and Stephanov, PRD 66, 076011 (2002)]

I pion dominates Euclidean two-point function of A0 and of P at x0 = β/2

T = 0 : pion mass = 267(2)MeV

↙ ↘
T = 169MeV : quasiparticle mass = 223(4)MeV screening mass = 303(4)MeV.

Implications for the hadron resonance gas model!?

Robaina et al. 1406.5602; 1506.05732
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Pion quasiparticle: test of the dispersion relation

GA(x0, T,p5)
GA(x0, T,p4)
GA(x0, T,p3)
GA(x0, T,p2)
GA(x0, T,p1)

x0/a

121110987654

0.000090

0.000080

0.000070

0.000060

0.000050

0.000040

0.000030

0.000020

0.000010

I also the residue in two-point function of A0 and of P are predicted

I dispersion relation & residue compatible with correlators at small p 6= 0.

GA(x0,p) =
1

3

∫
d3x eip·x 〈Aa0(x)Aa0(0)〉 =

∫ ∞
0

dω

2π
ρA(ω,p)

cosh[ω(β/2− x0)]

sinh[ωβ/2]
.

Ansatz : ρA(ω,p) = a1(p)δ(ω − ωp) + a2(p)(1− e−ωβ)θ(ω − c).

24× 643 thermal ensemble, T = 169MeV, mπ|T=0 = 270MeV 1506.05732.
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Heavy quark momentum diffusion coefficient κ

G(τ) =

〈
Re Tr

(
U(β, τ)gEk(τ,0)U(t, 0)gEk(0,0)

)〉
−3 〈Re TrU(β, 0)〉

=

∫ ∞
0

dω

2π
ρ(ω)

cosh[ω(β/2− τ)]

sinh[ωβ/2]

• color parallel transporters U(t2, t1) are propagators of static quarks
• (Lorentz) force-force correlator on the worldline of the quark.

κ = lim
ω→0

T

ω
ρ(ω), D = 2T 2/κ.

NNLO calculation available:

ρ(ω) = smooth function
ω→∞∼ g2ω3.

Kaczmarek et al. 1409.3724; see also
Caron-Huot, Laine, Moore 0901.1195;

HM 1012.0234; Banerjee et al. 1109.5738;
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The isovector vector channel

↓1GeV

I shift of spectral weight from the ρ to low frequency region as T increases.

Left: Aarts et al. ((Nf = 2 + 1), also strange current included) 1412.6411;

Right: Francis et al. (Nf = 2), 1212.4200 and in preparation; see also talk by Fl. Meyer.
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Spectral sum rules for ∆ρ(ω,k, T ) ≡ ρ(ω,k, T )− ρ(ω,k, 0)

∫ ∞
−∞

dω ω∆ρLV (ω,k, T ) = 0, ∀k [1107.4388]∫ ∞
−∞

dω

ω
∆ρLV (ω,k, T ) = χs − κlk 2 + O(|k|4),∫ ∞

−∞

dω

ω
∆ρTV (ω,k, T ) = κtk

2 + O(|k|4),∫ ∞
−∞

dω ω ∆ρL
A

(ω,k, T ) = −m〈ψ̄ψ〉
∣∣∣T
0
, ∀k [1406.5602]

...

∃ interpretation of κl and κt in terms of screening/antiscreening
of electric probe charges and currents placed in the medium Brandt et al. 1310.5160

1

3

∫
d3x e−ik·x 〈V a0 (x)V a0 (0)〉 =

∫ ∞
0

dω ρLV (ω,k, T )
coshω(β/2− x0)

sinhωβ/2
, (1)

− 1
6

(
δil −

kikl

k2

)∫
d3x e−ik·x 〈V ai (x)V al (0)〉 =

∫ ∞
0

dω ρTV (ω,k, T )
coshω(β/2− x0)

sinhωβ/2
, (2)

1

3

∫
d3x e−ik·x 〈Aa0(0)Aa0(x)〉 =

∫ ∞
0

dω ρL
A

(ω,k, T )
cosh(ω(β/2− x0))

sinh(ωβ/2)
(3)
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The diffusion coefficient D

I lattice results consistent with a strongly coupled scenario

I but a narrow transport peak cannot presently be excluded, which would
yield larger D.

Aarts et al. 1412.6411.
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Fermionic correlators new!

• Nucleon interpolating operator (parity +): ON+ = 1
2

(1 + γ0) εabc(uaCγ5db)uc

G(x0) =

∫
d3x 〈ON+(x) ŌN+(0)〉

=

∫ ∞
0

dω

2π

1

1 + eω/T

[
ρ+(ω)e−ωx0 − ρ−(ω)e−ω(β−x0)

]
• Chiral symmetry restored ⇒ parity doubling: G(β − x0) = G(x0).

R(x0) = G(x0)−G(β−x0)
G(x0)+G(β−x0)

parity doubling occurs at T ≈ Tc

 full spectral analysis underway.

Aarts et al. 1502.03603
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Quarkonium in the high-temperature phase

I for mQ large, Q̄Q tightly bound → survives as a quasiparticle in medium

I but Debye screening of Q̄Q potential and Landau damping ⇒
Im(ωp) grows and its residue (wrt c̄γc) is reduced.

I at what temperature different c̄c and b̄b ‘states’ ‘melt’ provides a
thermometer in heavy-ion collisions; p-wave bound states melt before
before s-wave bound states etc.

I formulate the problem in NRQCD; advantages:
• G(τ) =

∫∞
−2mQ

dω
2π

e−ωτ ρ(ω)

• ρ(ω) softer in the UV than in the relativistic theory
• ρ(ω) does not contain a transport peak.

Bottomomium: NRQCD and pNRQCD studies
• ground state Υ survives at least up to 2Tc, χb1 melts immediately above Tc
[Harris et al. 1402.6210, Nf = 2 + 1, mπ = 400MeV].
• Kim et al. [1409.3630] find χb1 survives for some time.

Charmonium: studies in relativistic formulation, recently also in NRQCD.

Talks by S. Kim, A. Ikeda, H. Ohno and H.-T. Shu.
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Interpretation of screening masses: static and non-static

Consider perturbating the Hamiltonian,

Ĥφ(t) = Ĥ −
∫
d3y φ(t,y)Ĵ(t,y),

with the external perturbation given by

φ(t,y) = δ(y)eωtθ(−t), ω ≥ 0.

Linear response ⇒

δ〈J(t = 0,x)〉 = GJJE (ωn,x)︸ ︷︷ ︸
Euclidean corr.

, for ω = ωn = 2πTn.

 0

 0.5

 1

-0.5  0

φ
(t

)

t / β

Correlation length in Matsubara sector
ωn = length scale over which a
perturbation with the time dependence
eωnt is screened (n ≥ 0).
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Screening masses at high temperatures

Weak-coupling picture of flavor-non-singlet screening masses:

I fermions have an effective mass of at least πT ⇒ dimensional reduction

I they form non-relativistic, 2+1d bound states of size O(m−1
E )

Laine, Vepsalainen hep-ph/0311268

I expect bound state to be described by a Schrödinger equation in 2+1d.

I Non-static sector: potential has a connection with an effective potential
used in the calculation of the dilepton production rate

[Aurenche, Gelis, Moore, Zakaret hep-ph/0211036; Caron-Huot 0811.1603;

Panero, Rummukainen, Schäfer 1307.5850].
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Vector screening masses: lattice vs. EFT

T = 254 MeV T = 340 MeV

Satisfactory agreement between lattice QCD and the EFT predictions.

Brandt et al. 1404.2404; Nt = 16 and Nt = 12, Ns = 64; mπ|T= 0 = 270MeV
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Non-static screening masses and transport coefficients

Linear response along with a constitutive equation for the vector current J ⇒

GJ0J0E (ωn, k)
ωn,k→0
===

χsDk
2

ωn +Dk2
⇒ E(ωn)2 ωn→0∼ ωn

D
.

χs = static susceptibility, D = diffusion coefficient, E(ωn) = screening mass in sector ωn

 0
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 0.6

 0.8
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 0  1  2

(E
(ω

n
)2

 -
 ω

n
2
)/

 (
2
π
T

ω
n
)

ωn / 2πT

Intercept=1/(2πT D)

AdS/CFT

weak coupling

kinetic theory

In the limit T →∞, extrapolating
the screening masses in the lowest
Matsubara sectors to ωn = 0 gives
the correct result, 1/(T D) = 0.

Brandt, Francis, Laine, HM 1408.5917; Kinetic theory: Arnold, Moore & Yaffe hep-ph/0111107
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Conclusion

I many equilibrium quantities known in the continuum limit
(mostly from staggered fermion calculations, now universality
checks with other actions)

I new impetus to put the topology of the Columbia plot on solid
footing, and to be more quantitative.

I progress in near-equilibrium quantities
• Nt ≈ 24, few-permille precision on correlation functions, quenched
continuum results

• theory support (effective field theory and sum rules, advantageous

reformulation of the problem,. . . )

Topics not covered: external magnetic fields (K. Szabo LAT13);
UA(1) aspects; many talks on finite-density at this conference.
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Backup slides
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