

Physics at the Belle II Experiment and Lattice QCD

Toru lijima Kobayashi-Maskawa Institute Nagoya University

2015.7.17 Lattice2015 @ Kobe

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

My Cards

exactly match to my research history

Master thesis A-dependence of $K^{-} + p' \rightarrow K^{+} \stackrel{\leftarrow}{=}^{\prime}$ at KEK-E176 Doctor thesis H-dibaryon search at BNL-E813/836 Present research *b-quark* physics at Belle/ Belle II

Talk Outline

B Physics (Heavy Flavor Physics) Belle II, LHCb, ... Val

Lattice QCD

Value of b-quark card is high !

+ Status of SuperKEKB/Belle II

SuperKEKB/Belle II

- New intensity frontier facility
- Target luminosity; $L_{peak} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

 $L_{int} > 50 \text{ ab}^{-1}$ by early 2020's.

 $\Rightarrow \sim 10^{10}$ BB, T⁺T⁻ and charms per year !

Motivation of Belle II

- Search for New Physics through processes sensitive to presence of virtual heavy particles.
- Complementary to direct search in LHC high P_T programs.

Tasting New Physics

Variety of observables w/ different sensitivity to New Physics models.

Elucidation of New Physics scenario.

		-	-				-
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - D^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g - 2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi, D. M. Straub, Nucl. Phys. B830, 17-94, 2010.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Unresolved issues Indication of New Physics ?

- Anomalies in $b \rightarrow s / l$ data
- Enhanced $Br(B \rightarrow D^{(*)} \tau \nu)$ rate
- $B_s \rightarrow \mu \mu$ and $B_d \rightarrow \mu \mu$
- Tension between $excl. incl. |V_{xb}|$
- Large CPV in charm decays
- LFV in Higgs decay $H \rightarrow \mu \tau$ (CMS)
- (g-2)_µ (BNL-E821) etc.

The most recent results were summarized in FPCP2015 @ Nagoya (May 25-29)

Lattice QCD

 $f B \rightarrow D$

 $\int B \rightarrow \pi, K$

fв

• f D

• **f** D→π, K

Belle II & LHCb

Heavy Flavor data (B/D/T) with ultimate precision become available !

pp collision large production rate

Ferrari

Powerful !

Belle II

e⁺e⁻ collision low background

TOYOTA FCV COMING SOON !

Clean !

Flavor Physics & Lattice

- If LHC (ATLAS/CMS) finds NP, their effects will emerge also in flavor physics observables, and they provide useful information for elucidation of NP.
- If LHC finds no NP, precision flavor measurements provide unique ways to find NP.
- In either case, lattice QCD inputs are of crucial importance to study or find NP in flavor physics measurements !

... Cosmic inflation can be indirectly detected by B-mode polarization of CMB. It requires very good understanding of foreground backgrounds !

Key Measurements @ Belle II

arXiv:1002.5012

0

- CPV in $b \rightarrow s$ penguin decays
- FCNC
- Tauonic decays
- LFV T decays

Observable	Belle 2006	SuperK	EKB
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})
Hadronic $b \rightarrow s$ transitions			
$\Delta S_{\phi K^0}$	0.22	0.073	0.029
$\Delta S_{\eta' K^0}$	0.11	0.038	0.020
$\Delta S_{K_s^0 K_s^0 K_s^0}$	0.33	0.105	0.037
$\Delta A_{\pi^0 K_S^0}$	0.15	0.072	0.042
$A_{\phi\phi K^+}$	0.17	0.05	0.014
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°
Radiative/electroweak $b \rightarrow s$ transitions			
$S_{K_{\mu}^{0}\pi^{0}\gamma}$	0.32	0.10	0.03
$\mathcal{B}(\tilde{B} \to X_s \gamma)$	13%	7%	6%
$A_{CP}(B \rightarrow X_s \gamma)$	0.058	0.01	0.005
$C_9 \text{ from } \overline{A}_{FB}(B \to K^* \ell^+ \ell^-)$	-	11%	4%
$C_{10} \text{ from } \overline{A}_{FB}(B \rightarrow K^* \ell^+ \ell^-)$	-	13%	4%
C_7/C_9 from $\overline{A}_{FB}(B \to K^* \ell^+ \ell^-)$	-		5%
R_K		0.07	0.02
$\mathcal{B}(B^+ \rightarrow K^+ \nu \nu)$	†† < 3 $\mathcal{B}_{\mathrm{SM}}$		30%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 B_{SM}$		35%
Radiative/electroweak $b \rightarrow d$ transitions			
Spy	-	0.3	0.15
$\mathcal{B}(B \to X_d \gamma)$	-	24% (syst.)	
Leptonic/semileptonic B decays			
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 B_{SM}$	$4.3 \text{ ab}^{-1} \text{ for } 50$	σ discovery
$\mathcal{B}(B^+ \rightarrow D\tau\nu)$	-	8%	3%
$\mathcal{B}(B^0 \to D \tau \nu)$	-	30%	10%
LFV in τ decays (U.L. at 90% C.L.)			
$\mathcal{B}(\tau \to \mu \gamma) [10^{-9}]$	45	10	5
$\mathcal{B}(\tau \to \mu \eta) [10^{-9}]$	65	5	2
$\mathcal{B}(au o \mu \mu \mu)$ [10 ⁻⁹]	21	3	1

Ultimate measurements down to theory error !

Uniqueness of Belle II

- Fully reconstructed tags to produce "offline B meson beam".
 - Strong tool for modes with neutrinos

 $B \rightarrow X IV, X TV, TV, K^{(*)}VV...$

- Excellent $\gamma \& \pi^0$ detection capability
 - S ($K_S^0\pi^0\gamma$), Br($X_S\gamma$), $A_{CP}(X_S\gamma)$

Precision CKM Measurements

- Comparison between
 - tree-based; $|V_{ub}| + \varphi_3$
 - loop-based; $\phi_1, \phi_2, |V_{td}|$
 - \rightarrow NP in loop
- Belle II is unique for $|V_{cb}|$ and $|V_{ub}|$

$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times (1 + h_{d,s}e^{2i\sigma_{d,s}})$$

Relative amplitude phase

Lattice QCD and Belle II

• Lattice QCD is important for CKM physics.

USQCD "Lattice QCD at the Intensity Frontier"

http://www.usqcd.org/documents/13flavor.pdf

Quantity	CKM	Present	2007 for ecast	Present	2018
	element	expt. error	lattice error	lattice error	lattice error
f_K/f_π	$ V_{us} $	0.2%	0.5%	0.5%	0.15%
$f_+^{K\pi}(0)$	$ V_{us} $	0.2%	_	0.5%	0.2%
f_D	$ V_{cd} $	4.3%	5%	2%	< 1%
f_{D_s}	$ V_{cs} $	2.1%	5%	2%	< 1%
$D \to \pi \ell \nu$	$ V_{cd} $	2.6%	_	4.4%	2%
$D \to K \ell \nu$	$ V_{cs} $	1.1%	_	2.5%	1%
$B\to D^*\ell\nu$	$ V_{cb} $	1.3%	_	1.8%	< 1%
$B\to \pi\ell\nu$	$ V_{ub} $	4.1%	_	8.7%	2%
f_B	$ V_{ub} $	9%	_	2.5%	< 1%
ξ	$ V_{ts}/V_{td} $	0.4%	2-4%	4%	< 1%
ΔM_s	$ V_{ts}V_{tb} ^2$	0.24%	7 - 12%	11%	5%
B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	3.5 - 6%	1.3%	< 1%

• Also for rare decay processes: e.g.: $B \rightarrow K^{(*)}I^+I^-$, $B \rightarrow K^* \gamma_{I}$

Time-dependent CPV

- Larger acceptance for Ks decay vertex +30%
- Improved vertex resolution $\sigma(Z) \sim 18 \mu m @ Belle II \leftrightarrow \sim 61 \mu m @ Belle$
 - \rightarrow less systematic error

$\Phi_{I} (\equiv \beta)$ Projection

Belle II projection for $sin 2\varphi_1$ from $B \rightarrow J/\psi Ks$

Belle II projection for $sin 2\varphi_1^{eff}$ from $b \rightarrow s \overline{s} s$ processes

BELLE2-NOTE-PH-2015-02: LHCb projections taken from: HL-LHC ECFA Workshop 2014 LHCb-PUB-2014-040, LHCb EPJC 73, 2373.

Firm SM upper bound required

V_{ub} at present

Persistence tension between inclusive and exclusive $|V_{ub}|$

V_{ub} Prospect at Belle II

- Belle II should resolve the "|V_{ub}| problem".
- Precision of the tagged $B \rightarrow \pi l v$ will be similar to the untagged one.

	Statistical	Systematic	Total Exp	Theory	Total
	(1	reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
$711 { m ~fb^{-1}}$	5.8	(2.3, 1.0)	6.3	8.7 (2.0)	10.8(6.6)
5 ab^{-1}	2.2	(0.9, 1.0)	2.6	4.0 (2.0)	4.7(3.3)
50 ab^{-1}	0.7	(0.3, 1.0)	1.3	2.0	2.4
$ V_{ub} $ exclusive (untagged)					
$605 \ {\rm fb}^{-1}$	2.7	(2.1, 0.8)	3.5	8.7 (2.0)	9.4(4.0)
5 ab^{-1}	1.0	(0.8, 0.8)	1.5	4.0 (2.0)	4.2(2.5)
$50 \ {\rm ab}^{-1}$	0.3	(0.3, 0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.4, 2.3)	6.0	2.5	6.5
5 ab^{-1}	1.1	(1.2, 2.3)	2.8	2.5	3.8
$50 \ {\rm ab^{-1}}$	0.4	(0.4, 2.3)	2.4	2.5	3.4

Belle II Internal Note #0021

Theory error for Inclusive |V_{ub}| uncertainty (2.5% in GGOU 4.5% in BLNP approach)

EW / Radiative Penguin

8

- Anomalies in $b \rightarrow s \parallel l$ have been seen by LHCb $\sqrt{P_5}$ in $B \rightarrow K^* \mu \mu$
 - $\checkmark Br (B_s \rightarrow \phi \mu \mu)$
 - \checkmark Lepton non-universality

• Belle II can measure inclusive $B \rightarrow XsII$, and also Kvv

	Observables	Belle or LHCb	Be	elle II	LHC	b
		(2014)	5 ab^{-1}	50 ab^{-1}	$8 \text{ fb}^{-1}(2018)$	$50~{\rm fb^{-1}}$
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		
	$A_{CP}(B \rightarrow X_{s,d}\gamma) [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5		
	$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10\pm 0.31\pm 0.07$	0.11	0.035		
	$\phi_s^{ m eff}(B_s o \phi \gamma)$	± 0.20			0.13	0.03
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	-		
Electroweak penguins	$\mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%		
	$q_0^2 A_{\rm FB}(B \to K^* \mu \mu)$	10%	30%	10%	5%	2%
	$\mathcal{B}(B_s \rightarrow \tau \tau) [10^{-3}]$	-	< 2	-		
	$\mathcal{B}(B_s \rightarrow \mu \mu) \ [10^{-9}]$	± 1.0			0.5	0.2

Time-dep. CPV in $b \rightarrow s, d + \gamma$

- In SM, photon from $b \rightarrow s, d + \gamma$ is almost left-handed.
- Right-handed photon causes interference, and large CPV.

SM prediction

SUSY models

Charged Higgs in B decays

Charged Higgs exchange may modify (semi-) leptonic
 B decays to the T lepton final state.

 $B \to \tau \nu$ $B \to D \tau \nu$

$B \rightarrow D^{(*)}TV$

- BaBar observes 3.4 σ excess over the SM expectation.
 - It excludes Type-II HDM.
- New results from Belle and LHCb reported at FPCP2015.
 - LHCb result is consistent with SM
 - Belle result is consistent with SM and also with BaBar. It does not exclude Type-II HDM.

$B \rightarrow D^{(*)}TV$ at Belle II

- Better low-momentum and SVD only tracking
 - \rightarrow better D* reconstruction
- \rightarrow Better tagging efficiency than Belle

[Belle	II]		
[0/]	Statistical	Systematic	Total Exp
[70]		(reducible, irreducible)	
R(D)			
5 ab^{-1}	3.8	(2.6, 3.1)	5.6
50 ab^{-1}	1.2	(0.8, 3.1)	3.4
$R(D^*)$			
-			
5 ab^{-1}	2.1	(1.5, 1.9)	3.2
50 ab^{-1}	0.7	(0.5, 1.9)	2.1

Polarization of T also can be measured at Belle II

Leptonic decay: $B \rightarrow \tau \nu$

Branching fraction in SM

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Global CKM fit predicts $\mathcal{B}(B \to \tau \nu)_{SM} = (0.753^{+0.102}_{-0.052}) \times 10^{-4}$
- In New Physics

 $\mathcal{B}(B \to \tau \nu) = \mathbf{r}_{\mathbf{H}} \cdot \mathcal{B}(B \to \tau \nu)_{SM}$

$$r_H = \left(1 - \frac{m_B^2}{m_{H^+}^2} \tan^2\beta\right)$$

Type-II 2HDM W.S. Hou, PRD 48, 2342 (1993)

$$r_H = \left(1 - \frac{m_B^2}{m_{H^+}^2} \frac{\tan^2\beta}{1 + \tilde{\epsilon_0} \tan\beta}\right)$$

SUSY A.G. Akeroyd, S.Recksiegel, J. Phys. G29, 2311 (2003)

$B \rightarrow TV$ at Belle II

Bollo II	Statistical	Systematic	Total Exp	Theory	Total
Delle II	(re	educible, irreducib	le)		
$ V_{ub} B \rightarrow \tau \nu$ (had. tagged)					
711 fb ⁻¹	19.0	(7.1, 2.2)	20.4	2.5	20.5
5 ab^{-1}	7.2	(2.7, 2.2)	7.9	1.5	8.1
50 ab^{-1}	2.3	(0.8, 2.2)	3.2	1.0	3.4
$ V_{ub} B \rightarrow \tau \nu$ (SL tagged)					
605 fb^{-1}	12.4	(9.0, +3.0)	$^{+15.6}_{-16.1}$	2.5	+15.8 -16.2
5 ab^{-1}	4.3	(3.1, +3.0)	+6.1 -7.2	1.5	+6.3 -7.3
50 ab ⁻¹	1.4	$(1.0, \frac{+3.0}{-4.8})$	+3.4	1.0	+3.6 -5.2

Charged Higgs at Belle II

Y. Sato (Nagoya)

		Th.		
	Now	5 ab-1	50 ab-1	Now
$B \rightarrow \tau \nu$	25%	10%	3%	-7+14%
B ightarrow D au v	30%	11%	4%	4%
$B ightarrow D^* au v$	19%	7%	2%	2%
$B \rightarrow X_{s} \gamma$	7%	5%	4%	7%

- All experimental inputs are assumed to be SM values.
- Experimental uncertainties are estimated based on Belle II TDR.
- Improvement of theory side is not included except for $B \rightarrow \tau v$.

LFV τ Decays

- SuperKEKB provides also large sample of τ decays (N_{τ} ~N_B)
- Lepton-Flavor-Violating decay is an unambiguous NP signal !

- 48 tau LFV modes have been searched for at B-factories.
- Note: need theorists' help to relate them (other than lγ,lll) to NP

Belle II and $(g-2)_{\mu}$

BNL-E821

 $a_{\mu}^{exp} = 116\,\,592\,\,089\,(63) \times 10^{-11}$ 0.54 ppm

New experiments at J-PARC and Fermilab is aiming at 0.1ppm precision, → requires reducing also the error for hadronic vacuum polarization effects.

Measurement w/ ISR

- BaBar, Frascati (KLOE/KLOE-2), BES III
 ✓ Pros : Better control of systematic errors (within a single experiment)
 - \checkmark Cons : Reduced statistics (1/ α reduction)
 - ✓ Overcome by large luminosity at Belle II.

$$s' = s(1 - 2E_{\gamma}^*/\sqrt{s})$$

- Belle could not measure π⁺ π⁻ due to trigger problems unfortunately.
- Result for $\pi^+\pi^-\pi^0$ available.

Belle II provides useful inputs to $(g-2)_{\mu}$ prediction

Hadron Spectroscopy

- Many charmonium-like and also bottomonium-like hadrons are observed.
- Many of them do not fit to the mass spectra predicted by the quark model.

SuperKEKB Accelerator

• Low emittance ("nano-beam") scheme employed

proposed by P.Raimondi

Machine parameters

Beam currents will be doubled.

Belle II Detector

- □ Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- □ Improved performance and hermeticity

Belle II Collaboration

• 23 countries, 99 institutes, 600+ collaborators.

Construction & Commissioning Schedule

BEAST phase 12016BEAST/SuperKEKB & cosmicsBEAST phase 2Mid 2017- Early 2018BEAST with Partial Belle IIFull physicsOct 2018-Full detector

BEAST Phase I

- During Phase I and 2 a commissioning detector will be used to measure beam backgrounds.
- BEAST Phase I starts in January 2016.
- IR beam pipe has been installed
- BEAST detectors are being installed.

Central Drift Chamber

- Belle II CDC is larger than Belle CDC.
- CDC construction has been done !
- Commissioning with cosmic rays in progress.

 $\begin{aligned} \sigma_p/p \sim 0.3\% + 0.1\% \times p(\text{GeV}) \text{ in } B = 1.5\text{T} \\ \sigma(\text{d}E/\text{d}x) \sim 6\% \end{aligned}$

TOP Counter (PID)

 Time-Of-Propagation (TOP) technique: precision timing of internally reflected Cherenkov photons produced in accurately polished quartz radiator (~50ps/photon).

- Key technologies;
 - MCP-PMT and electronics to detect single photon with ~ 50ps resolution.
 - Accurately polished quartz optics, and mechanics.
- Performance has been demonstrated with a beam test at Spring-8.

TOP Counter Production

TOP counter module production in progress to complete by April 2016.

Vertex Detector

- New vertex detectors:
 - ✓ 2-layer pixel detector based on DEPFET (Depleted P-chennel Field Effect Transistor) technology.
 - ✓ 4-layer DSSD (Double Sided Silicon Detector).
- Beam pipe radius reduced to 1 cm from 2 cm \rightarrow 1.5 cm for Belle

March 23, 2015 First electrically working DSSD ladder completed

Summary

- The Belle II experiment at SuperKEKB aims to find NP with ultimate precision measurement (a few %, typically) of heavy flavor decays (O(10¹⁰) samples / year).
- Lattice QCD provides crucial inputs to extract physics.
 ✓ Need precise enough calculations timely !
 - v Need precise enough calculation
- We will start
 - ✓ Commissioning of SuperKEKB in 2015.
 - $\checkmark\,$ Belle II physics run in 2017 w/o vertex, and in 2018 w/

Let's Keep in Touch !

My Cards

exactly match to my research history

Master thesis A-dependence of $K^{-} + p' \rightarrow K^{+} \stackrel{\leftarrow}{=}^{'}$ at KEK-E176

Present research *b-quark* physics at Belle/ Belle II

Wish values of these cards become higher and higher !

My 4th card

May indicate the subject of my next research What is it ?

えっ? Hmm...

My 4th card

May indicate the subject of my next research What is it ?

Hopefully, it is something new !

Backup

44

 $M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times (1 + h_{d,s}e^{2i\sigma_{d,s}})$

Relative amplitude phase

|V_{cb}| at present

6

- Exclusive $|V_{cb}|$ (relevant to lattice QCD) comes mainly from $B^0 \rightarrow D^{*} I^+ v$.
- Precision at the level of ~2%, but slight difference from inclusive (~2 σ).

|V_{cb}|Prospect at Belle II

- Tagged measurement of $B \rightarrow D^* Iv$ and $B \rightarrow D Iv$ will yield $|V_{cb}|$ with a similar level of precision.
- \rightarrow Require good prediction for F(w) and G(w)
- Improvement in inclusive $|V_{cb}|$ will be far modest.

Expected relative uncertainty in $|V_{cb}|$ from $B \rightarrow D^* I_V$

	Statistical	Systematic	Total H	Exp Theor	ry Total
	(re	educible, irreducib	le)		
$ V_{cb} $ exclusive)				
$711 { m ~fb^{-1}}$	0.6	(2.8, 1.1)	3.1	1.8	3.6
5 ab^{-1}	0.2	(1.1, 1.1)	1.5	1.5	2.2
50 ab^{-1}	0.1	(0.3, 1.1)	1.2	1.0	1.5

Belle II Internal Note #0021

48

Tracking eff. (statistics limited) Normalization: N(Y(4S)), f_{\pm}/f_0 , B⁰ lifetime, Br(D* \rightarrow D⁰ π), Br(D⁰ \rightarrow K π)

Prospect for D Leptonic Decays

- Important for both testing the SM and search for NP.
- Belle developed the method to tag D

	Statistical	Systematic		Total
		$\operatorname{reducible}$	irreducible	
$\mathcal{B}(D_s \to \mu \nu)$				
$913 { m ~fb^{-1}}$	5.3%	0%	3.8%	6.5%
5 ab^{-1}	2.3%	1.6%	0%- $0.9%$	2.9%
50 ab^{-1}	0.7%	0.5%	0%- $0.9%$	0.9%-1.3%
$\mathcal{B}(D_s \to \tau \nu)$				
$913~{ m fb}^{-1}$	3.7%	4.4%	3.5%	6.8%
5 ab^{-1}	1.6%	1.9%- $2.3%$	3.5%- $2.2%$	3.5%-4.3%
50 ab^{-1}	0.5%	0.6%- $0.7%$	3.5%-2.2%	2.3%-3.6%

JHEP 1309, 139 (2013)

Belle II Internal Note #0021

Irreducible error sources

- $Br(\tau \rightarrow X)$, $Br(D_S)$, D^0/D^+ fraction in $c\bar{c}$ fragmentation
- Data-MC difference in E_{ECL}(residual energy recorded in EM calorimeter)