Calculation of the decay width of decuplet baryons

Marcus Petschlies with Constantia Alexandrou, John Negele, Andrew Pochinsky and Sergey Syritsyn

Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn

based on [Phys.Rev. D88 (2013) 3, 031501] and [arXiv:1507.02724 [hep-lat]]

Lattice 2015 Kobe July 15 2015

The Project Cy-Tera (NEA YTIOAOMH/ETPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation

Marcus Petschlies (HISKP)

Lattice 2015 KobeJuly 15 2015 1 / 19

Outline

- Introduction
 - Motivation
 - Transfer matrix method
- Lattice calculation
 - transition amplitude from the lattice
 - extraction of coupling and width
 - results for two ensembles
- Conclusions and outlook

-

Introduction - motivation

Characterization of baryonic resonance states on the lattice (E_R, Γ)

- strong decays, transitions from baryonic initial to final states of bound hadrons, $B^* \to M B$
- well known example: $\Delta \rightarrow \pi + N$
- volume method: phase shifts via finite volume energy spectrum [Commun.Math.Phys. 104, 177 (1986), Commun.Math.Phys. 105, 153 (1986)]
- transfer matrix method: attempt to estimate $\mathcal{M} \sim \langle f | H | i \rangle$ from lattice QCD [*Phys.Rev. D65, 094505 (2002)*]
- first test for a baryonic, strong transition $\Delta \rightarrow \pi N$ [Phys.Rev. D88 (2013) 3, 031501]

Introduction - transfer matrix method (I)

$$i\mathcal{M}(B^* \to MB)(2\pi)^4 \,\delta\left(P_{\mathrm{out}} - P_{\mathrm{in}}\right) = \lim_{t_f - t_i \to \infty} \langle MB, t_f, \mathrm{out} \,|\, B^*, t_i, \mathrm{in} \rangle$$

- no physical transition on a Euclidean lattice in finite volume
- overlap of finite volume lattice states \leftrightarrow if energies of levels are sufficiently close
- \bullet estimates from lattices with finite time extent \leftrightarrow if transition amplitude sufficiently small
- final states at non-zero momentum with fine resolution relative momentum \leftrightarrow lattice volume sufficiently large
- 3-momentum conservation on the lattice, but no energy conservation from initial to final state

$$E_f - E_i = E_{MB} - E_{B^*} \ll (t_f - t_i)^{-1}$$

 $E^* - E_f, E_i \gg (t_f - t_i)^{-1}$

• Fermi's Golden Rule using $x = \langle MB \,|\, B^*
angle$ from lattice QCD

$$\Gamma_{B^* \to MB} = 2\pi \left\langle |x|^2 \right\rangle \rho(E)$$

Introduction - transfer matrix method (II)

start from transfer matrix for system of 2 states

$$\mathbf{T} = e^{-a\bar{E}} \begin{pmatrix} e^{-a\delta/2} & ax & \cdots \\ ax & e^{+a\delta/2} & \\ \vdots & & \ddots \end{pmatrix}$$

• transition amplitude $x = \langle B^* \, | \, M \, B \rangle$ parametrized by transfer matrix ${
m T}$

•
$$\bar{E} = (E_{B^*} + E_{MB})/2$$
 and $\delta = E_{MB} - E_{B^*}$

- restrict to 2-state sub-space for the spectrum, span $\{|B^*\rangle, |MB\rangle\}$
- T with eigenstates of energy

$$E_{\pm} \approx \bar{E} \pm \sqrt{\delta^2/4 + x^2}$$

イロト イポト イヨト イヨト

Introduction - transfer matrix method (III)

• summation over all possibilities of one transition $B^* \rightarrow MB$ (leading order)

$$\begin{array}{lll} \langle B^*, \, t_f \, | \, M \, B, \, t_i \rangle & = & \langle B^* \, | \, \mathrm{e}^{-H(t_f - t_i)} \, | \, M \, B \rangle = \langle B^* \, | \, \mathrm{T}^{n_{fi}} \, | \, M \, B \rangle \\ & = & \mathsf{ax} \, \frac{\sinh(\delta \, \Delta t_{fi}/2)}{\sinh(a\delta/2)} \, \mathrm{e}^{-\bar{E}\Delta t_{fi}} \, , \end{array}$$

where $\Delta t_{fi} = t_f - t_i = a n_{fi}$

• approximation of δ -functional in Euclidean time

$$a\sinh(\delta \Delta t_{fi}/2)/\sinh(a\delta/2) \xrightarrow{\Delta t_{fi} \to \infty}{a \to 0} 2\pi \,\delta(p^0_{MB} - p^0_{B^*})$$

• for sufficiently small δ linear expansion

$$\langle B^*, t_f | MB, t_i \rangle = \left[\mathsf{ax} \, \Delta t_{fi} + \mathcal{O} \left(\delta^2 \, \Delta t_{fi}^3 \right) \right] \, \mathrm{e}^{-\bar{E} \Delta t_{fi}} + \dots$$

 ellipsis for higher order contributions, contributions from excited states (no asymptotic B* and MB states), mixing with other states

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lattice calculation - $B^* \rightarrow M B$ [Phys.Rev. D88 (2013) 3, 031501]

$$\Delta \to \pi N$$
, $\Sigma^* \to \pi \Lambda$, $\Sigma^* \to \pi \Sigma$, $\Xi^* \to \pi \Xi$

transitions for the hybrid action with $N_f = 2 + 1$ and $m_{PS} = 350 \text{ MeV}$, L = 3.4 fm

Lattice calculation - $B^* \rightarrow M B [arXiv:1507.02724 [hep-lat]]$

$$\Delta \rightarrow \pi N$$
, $\Sigma^* \rightarrow \pi \Lambda$, $\Sigma^* \rightarrow \pi \Sigma$, $\Xi^* \rightarrow \pi \Xi$

transitions for the unitary domain wall fermion action with $N_f=2+1$ and $m_{PS}=180$ MeV, L=4.5 fm

Marcus Petschlies (HISKP)

Lattice calculation - transition amplitude

• suitable ratio of 3-point and 2-point functions

$$R_{MB}^{B^{*}}(\Delta t_{fi}, \vec{Q}, \vec{q}) = \frac{C_{\mu}^{B^{*} \to MB}(\Delta t_{fi}, \vec{Q}, \vec{q})}{\sqrt{C_{\mu}^{B^{*}}(\Delta t_{fi}, \vec{Q}) C^{MB}(\Delta t_{fi}, \vec{Q}, \vec{q})}}$$

• isospin channels

$$\begin{array}{ll} \Delta^{++} \rightarrow \pi^+ \, \textit{N}^+ \, , & \Sigma^{*+} \rightarrow \pi^+ \, \Lambda \\ \Sigma^{*+} \rightarrow \pi^+ \, \Sigma^0 \, , & \Xi^{*-} \rightarrow \pi^- \, \Xi \end{array}$$

• standard interpolating operators for B^* , $M = \pi$, B; represent MB by

$$J^{lpha}_{M\,B}(t,ec q,ec x) = \sum_{ec y} \, J_M(t,ec y+ec x) \, J^{lpha}_B(t,ec x) \, \mathrm{e}^{-iec qec y}$$

- M B system with relative momentum to generate overlap with l = 1 state; dominant contribution from coupling $s_B \oplus l \to J_{B^*} = 3/2$
- approximate $C^{MB} \approx C^M \times C^B$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lattice calculation - transition amplitude

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Lattice calculation - ensemble data

- hybrid action: domain wall valence quarks on $N_f = 2 + 1$ staggered sea @ $m_{PS} = 350 \text{ MeV}$ MILC ensemble 2864f21b676m010m050 [Phys.Rev. D64, 054506 (2001)]
- unitary action with $N_f = 2 + 1$ domain wall fermions @ $m_{PS} = 180$ MeV [Phys.Rev. D79, 054502 (2009)]

action	$L^3 imes T$	$m_{PS}/{ m MeV}$	a/fm	L/fm	L_5/a	$N_{\rm conf}$	$N_{\rm src}$
hybrid	$28^{3} \times 64$	350	0.124	3.4	16	210	4 indep.
unitary	$32^{3} \times 64$	180	0.143	4.5	32	254	4 coh.

- Gaussian source and sink smearing with APE-smeared gauge links
- relative momentum: $\vec{q} = 2\pi/L \cdot \vec{e}_i$,
- averaging over $i = \pm 1, \pm 2, \pm 3$, forward and backward propagation

イロト イポト イラト イラト

Lattice calculation - ratio signal

 $R^{\Delta}_{\pi N}(t)$

Lattice calculation - ratio signal

Marcus Petschlies (HISKP)

Decuplet baryon resonances

Lattice 2015 KobeJuly 15 2015 13 / 19

Lattice calculation - ratio fits

$$f_1(t) = c_0 + c_1 a \frac{\sinh(c_2 t/2)}{\sin(ac_2/2)}, \quad f_2(t) = c_0 + c_1 \frac{t}{a} + c_2 \left(\frac{t}{a}\right)^3 + \dots$$

Marcus Petschlies (HISKP)

Decuplet baryon resonances

Lattice 2015 KobeJuly 15 2015 14 / 19

Lattice calculation - ratio fits

left to right, top to bottom: $\Delta \to \pi N$, $\Sigma^* \to \pi \Lambda$, $\Sigma^* \to \pi \Sigma$ and $\Xi^* \to \pi \Xi$

Marcus Petschlies (HISKP)

Lattice calculation - extraction of the coupling and width

• definition of the matrix element from c_1

$$c_1 = \sum_{\sigma_3, \tau_3} \frac{\mathcal{M}(\vec{Q}, \vec{q}, \sigma_3, \tau_3)}{\sqrt{N_{B^*} N_{MB}}} \, V \, \delta_{\vec{Q}\vec{Q}} \times \text{spin sum factor}$$

• normalizations of finite volume B^* and MB states

$$N_{B^*} = V \frac{E_{B^*}}{m_{B^*}}$$
$$N_{MB} = N_M \times N_B = 2V E_M \times V \frac{E_B}{m_B}$$

 \bullet decomposition of ${\cal M}$ by connecting to LO effective field theory with coupling $g^{B^*}_{B\,M}$

$$\mathcal{M}(\vec{Q}, \, \vec{q}, \, \sigma_3, \, \tau_3) = \frac{g_{MB}^{B^*}}{2m_B} \, \bar{u}_{B^*}^{\mu\,\alpha}(\vec{Q}, \sigma_3) \, q_\mu \, u_B^{\alpha}(\vec{Q} + \vec{q}, \tau_3) \, C_{\rm CG}$$

Lattice calculation - results for the coupling $g_{MB}^{B^*}$ and width $\Gamma_{MB}^{B^*}$

coupling
$$g_{MB}^{B^*} = c_1 \frac{\sqrt{N_{B^*} N_{MB}}}{V C_{CG}} \frac{2m_B}{|\vec{q}|} \left(\frac{1}{3} \frac{E_B(\vec{q}^2) + m_B}{m_B}\right)^{-1/2}$$
.

process	unitary	hybrid	PDG
$\Delta^{++} \leftrightarrow \pi^+ N^+$	23.7 (0.7) (1.1)	26.7 (0.6) (1.4)	29.4 (0.3)
$\Sigma^{*+} \leftrightarrow \pi^+ \Lambda$	18.5 (0.3) (0.5)	23.2 (0.6) (0.8)	20.4 (0.3)
$\Sigma^{*+} \leftrightarrow \pi^+ \Sigma^0$	16.1 (0.3) (1.9)	19.0 (0.7) (2.9)	17.3 (1.1)
$\Xi^{*-} \leftrightarrow \pi^- \Xi^0$	21.0 (0.3) (0.3)	25.6 (0.6) (4.3)	19.4 (1.9)

width
$$\Gamma_{MB}^{B^*} = 2\pi \left[\frac{2c_1^2}{2s_{B^*}+1}\right]\rho(E_{MB})$$
 in GeV

process	unitary	hybrid	PDG
$\Delta^{++} \leftrightarrow \pi^+ N^+$	119.4 (7.9) (4.5)	238.5 (12.2) (16.2)	118(2)
$\Sigma^{*+} \leftrightarrow \pi^+ \Lambda$	54.5 (2.1) (1.3)	143.9 (7.4) (6.1)	31.3 (8)
$\Sigma^{*+} \leftrightarrow \pi^+ \Sigma^0$	17.6 (0.8) (2.1)	58.3 (3.4) (6.8)	4.2(5)
$\Xi^{*-} \leftrightarrow \pi^- \Xi^0$	35.1 (1.1) (0.4)	126.0 (5.6) (18.5)	9.9 (1.9)

э

(日)

- problem: "rigid" kinematical setup given by the lattice parameters
- study of systematics (a, m_{PS}, L)
- may require a fine-tuned, combined extrapolation in lattice spacing, pion mass and spatial volume to keep the method applicable
- interesting cases of impact for this method: resonances of higher spin, negative parity
- apply more known techniques (enlarged operator basis, moving frames) ... with growing computational cost

イロト イポト イラト イラト

Thank you very much for your attention.

æ

・ロト ・四ト ・ヨト ・ヨト