Perturbative versus non-perturbative decoupling of heavy quarks

Francesco Knechtli

with M. Bruno, J. Finkenrath, B. Leder and R. Sommer

Bergische Universität Wuppertal

14th July, 2015

Lattice 2015, Kobe

Motivation

Including a dynamical charm quark

At which level of precision do effects of a dynamical quarks become visible? sub-percent effects in low energy $E\ll M_{\rm c}$ quantitites [Bruno, Finkenrath, FK, Leder and Sommer, 2015] Here: compare renormalisation effects of charm to perturbation theory

Decoupling as an effective theory

QCD with $N_{\rm q}$ quarks, $\Lambda_{\rm q}$ (mass-independent scheme) $N_{\rm l}$ light (massless) quarks; $N_{\rm q} - N_{\rm l}$ quarks of RGI mass MDescription in terms of a theory with only $N_{\rm l}$ light quarks

$$\mathcal{L}_{dec} = \mathcal{L}_{QCD_{N_{l}}} + (\Lambda_{q}/M)^{2} \sum_{i} \omega_{i} \Phi_{i} + O((\Lambda_{q}/M)^{4})^{4}$$

Heavy quarks: coupling $\overline{g}_{
m dec}(\mu/\Lambda_{
m dec})$ and power corrections

	Perturbation theory Simulations Conclusions								
Factorisation formula									
	Ratio of Λ parameters								
	In the effective theory $\Lambda_{\rm l} = \Lambda_{\rm dec}(M,\Lambda_{\rm q})$								
	$P_{ m l,q}(M/\Lambda_{ m q}) ~=~ \Lambda_{ m dec}(M,\Lambda_{ m q})/\Lambda_{ m q}$								
	P can be computed in perturbation theory								
	Factorisation formula								
	$m^{\rm had}$ is a hadron mass or an hadronic scale like r_0^{-1} , $t_0^{-1/2}$, w_0^{-1} At leading order: $m_{\rm q}^{\rm had}=m_1^{\rm had}+{\rm O}((\Lambda_{\rm q}/M)^2)$								
	$\frac{m_{\rm q}^{\rm had}(M)}{m_{\rm q}^{\rm had}(0)} = Q_{\rm l,q}^{\rm had} \times P_{\rm l,q}(M/\Lambda_{\rm q}) + \mathcal{O}((\Lambda_{\rm q}/M)^2)$								
	$Q_{\rm l,q}^{\rm had} = \frac{m_{ m l}^{ m had}/\Lambda_{ m l}}{m_{ m q}^{ m had}(0)/\Lambda_{ m q}}$ is independent of M								
F. Kn	echtli, Decoupling of heavy quarks 2,	/13							

Matching of couplings

Leading order

Relation between the $\overline{\rm MS}$ -couplings $\overline{g}_{\rm dec}(\mu/\Lambda_{\rm dec}) = \overline{g}_{\rm l}(\mu/\Lambda_{\rm l})$ and $\overline{g}(\mu/\Lambda) \equiv \overline{g}_{\rm q}(\mu/\Lambda_{\rm q})$

$$\overline{g}_{\rm dec}^2(\mu/\Lambda_{\rm dec}) = \overline{g}^2(\mu/\Lambda) + \mathcal{O}(\overline{g}^4(\mu/\Lambda)) \,.$$

At $\mu = m_*$ defined through $\overline{m}(m_*) = m_*$ [Weinberg, 1980; Bernreuther and Wetzel, 1982] the relation is known up to four loops [Grozin, Hoeschele, Hoff and Steinhauser, 2011; Chetyrkin, Kühn and Sturm, 2006]

$$\overline{g}_{dec}^{2}(m_{*}/\Lambda_{dec}) = \overline{g}^{2}(m_{*}/\Lambda) C(\overline{g}(m_{*}/\Lambda))$$
$$C(g) = 1 + c_{2}g^{4} + c_{3}g^{6} + \dots \quad (c_{1} = 0)$$

Ratio of Λ parameters

$$\begin{aligned} & \operatorname{Ratio} P = \Lambda_{\operatorname{dec}}(M, \Lambda) / \Lambda \\ & \operatorname{Using} \frac{\Lambda}{\mu} = \exp\left\{-\int^{\bar{g}} \mathrm{d}x \frac{1}{\beta(x)}\right\} = \exp(I_g(\bar{g})) : \\ & P_{\mathrm{l,q}}(M/\Lambda) = \exp\left\{I_g^1(g_*\sqrt{C(g_*)}) - I_g^q(g_*)\right\} \\ & \text{where } \exp(I_g^i(\bar{g})) = \left(b_0(N_i)\bar{g}^2\right)^{-b_1(N_i)/(2b_0(N_i)^2)} \mathrm{e}^{-1/(2b_0(N_i)\bar{g}^2)} \times [1+O(\bar{g}^2)] \\ & \operatorname{Using} \frac{M}{\bar{m}} = \exp\left\{-\int^{\bar{g}} \mathrm{d}x \frac{\tau(x)}{\beta(x)}\right\}, \text{ the coupling } g_* = \bar{g}(\mu = m_*) \\ & \text{ is computed by inverting } (M \text{ corresponds to } \bar{m} = m_*) \\ & \frac{\Lambda}{M} = \exp\left\{-\int^{g_*(M/\Lambda)} \mathrm{d}x \, \frac{1-\tau_{\mathrm{q}}(x)}{\beta_{\mathrm{q}}(x)}\right\} \end{aligned}$$

The coupling g_*

Loop expansion

$$\begin{aligned} &\beta_{\mathbf{q}}(\bar{g})^{\bar{g} \to 0} - \bar{g}^3 \left\{ b_0 + \bar{g}^2 b_1 + \ldots \right\}; \ b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathbf{q}} \right), \ b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38}{3} N_{\mathbf{q}} \right) \\ &\tau_{\mathbf{q}}(\bar{g})^{\bar{g} \to 0} - \bar{g}^2 \left\{ d_0 + \bar{g}^2 d_1 + \ldots \right\}; \ d_0 = 8/(4\pi)^2 \\ & \text{e.g. two-loop:} \ \frac{1 - \tau(x)}{\beta(x)} = -\frac{1}{b_0 x^3} + \frac{b_1}{b_0^2 x} - \frac{d_0}{b_0 x} + \mathcal{O}(x) \end{aligned}$$

4-loop relation $\frac{\Lambda}{M} = \exp\left\{-\int^{g_*(M/\Lambda)} dx \, \frac{1-\tau_{\mathbf{q}}(x)}{\beta_{\mathbf{q}}(x)}\right\}$

The factor $P_{l,q}$

$$P_{l,q} = \frac{1}{k} \underbrace{\left(\frac{M}{\Lambda}\right)^{\eta_0}}_{1-\text{loop "approx"}} \ell^{\eta_1^M/2b_0(N_q)} \times \left[1 + O\left(\frac{\log \ell}{\ell}\right)\right]$$
where $\ell = \log(M/\Lambda)$ and $(\tilde{b}_i(n) = b_i(n)/b_0(n))$

$$\log k = \frac{\tilde{b}_1(N_q)}{2b_0(N_q)} \log 2 - \frac{\tilde{b}_1(N_l)}{2b_0(N_l)} \log(2b_0(N_q)/b_0(N_l))$$

$$\frac{N_q N_l \eta_0 \eta_1^M/2b_0(N_q) \log(k)}{2 0 0.121212 0.010829 0.046655}$$

$$\frac{4}{5} \underbrace{3}_{0.074074} 0.017284 0.012756}_{5} \underbrace{5}_{0.002622}$$

Decoupling of charm quark

 $N_{\alpha} = 4, N_{l} = 3$ $N_{\rm q} = 4, \ N_{\rm l} = 3$ $M_{\rm c}/\Lambda$ $M_{\rm c}/\Lambda$ relative correction to $P^{(1)}$ 1.30.04 1.2Р. 0.02 1.1 2 loop 1 loop 3 loop ·-4 loop $\cdot - 4 \log p$ 0 1 0 510 15 200 5 101520 M/Λ M/Λ One-loop "approximation" $P_{l,q}^{(1)} = (M/\Lambda)^{\eta_0}$, $\eta_0 = 1 - \frac{b_0(N_q)}{b_0(N_1)} > 0$ very close to P (accidentally)

Mass dependence of $P_{4,5}$

Decoupling of bottom quark

Simulations

The model

We study a theory with $N_q = 2$ heavy quarks and compare it to Yang-Mills theory $(N_l = 0)$ We simulate $N_q = 2$ O(a) improved Wilson quarks with plaquette gauge action

Ensembles

β	$a [\mathrm{fm}]$	BC	$T \times L^3$	$M/\Lambda_{\overline{\rm MS}}$	kMDU	$ au_{\mathrm{exp}}$
5.3	0.0658(10)	р	64×32^3	0.638(46)	1	0.04
		р	64×32^3	1.308(95)	2	0.08
		р	64×32^3	2.60(19)	2	0.02
5.5	0.0486(7)	0	120×32^3	0.630(46)	8	0.3
		0	120×32^3	1.282(93)	8	0.1
		р	96×48^3	2.45(18)	4	0.1
5.7	0.0341(5)	0	192×48^3	0.587(43)	4	0.3.
		0	192×48^3	1.277(94)	4	0.3
		0	192×48^3	2.50(18)	8	0.2

Observables

Scale t_0

Wilson flow: scale t_0 [Lüscher, 2010]

$$\mathcal{E}(t_0) = 0.3, \quad \mathcal{E}(t) = t^2 \langle E(x,t) \rangle$$

Factorisation formula for the mass-dependence

$$\sqrt{t_0(M)/t_0(0)} = 1/(P_{0,2}Q_{0,2}) + O((\Lambda/M)^2)$$

We use $Q_{0,2} = [\sqrt{t_0(0)}\Lambda]_{N_q=2}/[\sqrt{t_0}\Lambda]_{N_q=0} \simeq 1.19(13)$ [ALPHA; Sommer, Lattice 2013] We compute from simulations at lattice spacing $a \sqrt{t_0(M)/t_0(0)} = \sqrt{t_0(M)/t_0(M_{ref})} \times \lim_{a \to 0} \sqrt{t_0(M_{ref})/t_0(0)}$ $(M_{ref}/\Lambda = 0.59$; continuum limit from $\beta = 5.3$, 5.5)

Results

Conclusions

Summary

- decoupling of heavy quarks leaves traces through renormalization and power corrections
- ▶ perturbation theory "converges" fast for decoupling of heavy quarks at leading order in 1/M
- ► factorisation formula for the mass dependence of hadronic scales is confirmed by simulations of N_q = 2 O(a) improved Wilson quarks at a = 0.034 fm and M ≈ M_c/2

Outlook

- combined continuum limit with twisted mass simulations
- simulations at M_c using $a = 0.034...018 \,\mathrm{fm}$
- estimates of the effects of sea charm quark on observables like f_{D_s}, charmonium, charmonium-like exotics

