The three-quark potential of various quark configurations

Miho Koma (Nihon University, College of International Relations)
Yoshiaki Koma (Numazu College of Technology)
We study the static three-quark potential in $\mathrm{SU}(3)$ lattice gauge theory at zero temperature with the Polyakov loop correlation function (PLCF). By employing the multilevel algorithm we overcome the smallness of the signal to noise ratio and obtain remarkably clean signals. We investigate the 224 sets of three-quark configurations with various sizes and geometries.

1. Three-quark potential

The static three-quark source

$\int_{0}^{4} \quad$| \Rightarrow Polyakov loop correlation |
| :--- |
| function (PLCF) |

- The multilevel algorithm is useful to compute the correlation functions of extremely small expectation values, which arrows us to obtain potentials even from 1 gauge configuration. [Koma^{2}, Lat2014]

2. Simulation setting

- Three quarks are placed at the vertices of regular, isoceles, right and obtuse triangls, and in line.
 isosceles)

(right)

(obtuse)

(line)
- The Wilson gauge action, 24^{4} lattice, $\beta=6.00, a=0.093 \mathrm{fm}, 1$ gauge configuration, 6 sublattices, 500000 internal updates
(ex) regular triangle

- String length
$=\Lambda$ distance (obtuse and line)
$=\mathrm{Y}$ distance (otherwise)

3. Numerical results

- The static potential for the 224 sets of threequark configurations

String Length $[a]$

- The three-body effect

$$
V_{q \bar{q}}=-\frac{0.296}{r}+0.0463 r+0.795
$$

[Koma ${ }^{2}$, Lat2014]

4. Summary

- We compute the static potential for the 224 sets of three-quark configurations with the PLCF at zero temperature.
- The potentials fall into one curve when the minimum distance among the three quarks is greater than $2 a$.
- The three-body effect becomes clear for larger sizes of the triangles.
Y.K. is partially supported by the Ministry of Education, Science, Sports and Culture, Japan, Grant-in-Aid for Young Scientists (B) (24740176). The main calculation has been performed on the NEC SX8 at RCNP, Osaka University, Japan. (poster_mihokoma_final.tex, printed on July 13, 2015) No. 15

