Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results 00 0000 00000	Conclusion and Outlook

Pion-pion interaction from $N_f = 2+1$ simulations using the stochastic LapH method

Ben Hörz Trinity College Dublin

The 33rd International Symposium on Lattice Field Theory July 14, 2015

イロン イヨン イヨン イヨン 三日

1/20

Preliminaries ●0000	Current Insertions in the stochastic LapH framework 000	Results 00 0000 00000	Conclusion and Outlook
Preliminaries			

- phase shift calculations from the lattice increasingly elaborate
- can we move on to resonance structure computations?
- (in some sense) simplest resonance form factor: timelike pion form factor
- phenomenological relevance
 - hadronic vacuum polarization contribution to $(g-2)_{\mu}$ can be related to $R(s) \propto \sigma_{\rm tot}(e^+e^- \rightarrow {\rm hadrons})$
 - cross section dominated by two-pion final states at low energies
 - relevant quantity is the timelike pion form factor $F_{\pi}(s)$

$$R(s) = rac{1}{4} \left(1 - rac{4m_{\pi}^2}{s}
ight)^{3/2} \left| F_{\pi}(s)
ight|^2$$

e.g. [Jegerlehner, Nyffeler 2009]

2 / 20

Preliminaries 0●000	Current Insertions in the stochastic LapH framework 000	Results 00 0000 00000	Conclusion and Outlook
Proliminarios			

Finite-volume methods

- Lüscher method relates infinite-volume (IV) scattering to spectrum of the theory in a finite box (FV)
- single-channel quantization condition

[Lüscher 1986, 1990, 1991; Rummukainen, Gottlieb 1995]

lab frame energies E_n can be extracted on the lattice
 field-theoretic derivations, multi-channel extensions

 e.g. [Kim, Sachrajda, Sharpe 2005; Briceno, Hansen, Walker-Loud 2014]

Preliminaries 00●00	Current Insertions in the stochastic LapH framework 000	Results 00 0000 00000	Conclusion and Outlook
Preliminaries			

Timelike pion form factor from Lattice QCD

- behavior of that quantization condition under small perturbations encodes even more information [Meyer 2012]
- derivation of Meyer closely related to Lellouch-Lüscher formalism [Lellouch, Lüscher 2001]
- Key formula:

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|j^{(\mathbf{P},\Lambda)}|\mathbf{P},\Lambda,\mathfrak{n}\rangle\right|^{2}$$

has been demonstrated to work using overlap fermions
 [Feng et al. 2014]

Preliminaries 000●0	Current Insertions in the stochastic LapH framework	Results 00 0000 00000	Conclusion and Outlook

Preliminaries

Ingredients for self-contained extraction from LQCD

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|j^{(\mathbf{P},\Lambda)}|\mathbf{P},\Lambda,\mathfrak{n}\rangle\right|^{2}$$

- extract energy levels for given momentum \mathbf{P} and irrep Λ
- use all levels across all irreps to map out the phase shift $\delta_1(p)$ and parametrize it
- compute $\phi'(q)$ for each energy level numerically
- extract the bare current matrix element

Preliminaries 0000●	Current Insertions in the stochastic LapH framework	Results 00 0000 00000	Conclusion and Outlook

Preliminaries

Ingredients for self-contained extraction from LQCD

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|j^{(\mathbf{P},\Lambda)}|\mathbf{P},\Lambda,\mathfrak{n}\rangle\right|^{2}$$

- extract energy levels for given momentum \mathbf{P} and irrep Λ
- use all levels across all irreps to map out the phase shift $\delta_1(p)$ and parametrize it
- compute $\phi'(q)$ numerically

extract the *bare* current matrix element

Preliminaries 00000	Current Insertions in the stochastic LapH framework ●○○	Results 00 0000 00000	Conclusion and Outlook
Current Insertions	n the stochastic LapH framework		

stochastic LapH framework: light quark lines are estimated stochastically from N_R random noise vectors ρ

[Morningstar et al. 2011]

$$\begin{split} \mathcal{Q} &\approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{b} \varphi^{[b]}(\rho^r) \varrho^{[b]}(\rho^r)^{\dagger} \\ \text{with source} \quad \varrho^{[b]}(\rho) &= V_s P^{(b)} \rho \\ &\text{sink} \quad \varphi^{[b]}(\rho) &= S \Omega^{-1} V_s P^{(b)} \rho \end{split}$$

 $P^{(b)}$ - dilution projector, Ω^{-1} - propagator $S = V_s V_s^{\dagger}$ - LapH smearing (distillation) operator

 \blacksquare natively the sinks φ are smeared immediately after the inversion

We need unsmeared sinks for current insertions!

Preliminaries 00000	Current Insertions in the stochastic LapH framework $\circ \bullet \circ$	Results 00 0000 00000	Conclusion and Outlook
Current Insertions	in the stochastic LapH framework		

- We need unsmeared sinks for current insertions!
- in the stochastic LapH framework, current insertions behave just like mesons in every other respect
 - factorization of correlators into *"meson" functions* on source and sink timeslices
 - define current functions (here: local vector current)

$$\Psi_k^{(\mathsf{V})}(\mathbf{x},t) = \overline{\varphi}_{\mathbf{x}t}'(\rho_1)^{\dagger} \gamma_4 \gamma_k \varphi_{\mathbf{x}t}'(\rho_2)$$

 $\varphi', \overline{\varphi}'$ - unsmeared quark sinks

 minimally invasive hook into code after the inversions to compute *current functions* - rest of stochastic LapH workflow left intact

Preliminaries	Current Insertions in the stochastic LapH framework	Results	Conclusion and Outlook
	000	00	
		00000	
Current Insertions	in the stochastic LapH framework		

- we have implemented the local vector current, extension straightforward
- we are after matrix elements of the vector current between the vacuum and states belonging to a particular irrep

$$\left|\langle 0|j^{(\mathbf{P},\Lambda)}|\mathbf{P},\Lambda,\mathfrak{n}
ight
angle
ight|^{2}$$

may use the linear combination of spatial components of

$$j^{a}_{\mu} = \bar{\psi}\gamma_{\mu}\tau^{a}/2\psi + iac_{V}\partial_{\nu}\left\{\bar{\psi}\sigma_{\mu\nu}\tau^{a}/2\psi\right\}$$

that transforms irreducibly $\Rightarrow j^{(\mathbf{P},\Lambda)}$ [Feng et al. 2014]

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ り へ ()
8 / 20

Preliminaries 00000	Current Insertions in the stochastic LapH framework	Results ●0 0000 00000	Conclusion and Outlook
Lattice Setup			

Lattice setup

- O(a)-improved Wilson fermions, Lüscher-Weisz gauge action, open temporal BC
- $m_\pi pprox$ 280 MeV, $m_{
 m K} pprox$ 460 MeV, a pprox 0.064 fm
- $m_{\pi}L \approx 4.4$
- Construction of observables
 - stout-smeared spatial gauge links in Laplacian:
 - $\rho = 0.1, n_{
 ho} = 36$
 - LapH smearing $N_{ev} = 192$
 - one source time t_0 per config
 - dilution scheme: Laplace EV interlace 8, full spin and time dilution - time interlace 8 for relative-time lines
 - we have measured on 856 / 1712 configs

Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results O● ○○○○ ○○○○○	Conclusion and Outlook
Lattice Setup			

Temporal boundary effects

- boundary effects expected to decay as $e^{-2m_{\pi}t}$ near the chiral limit [Bruno et al. 2015]
- we do see large boundary effects in the spectrum of the lattice Laplacian

Figure : Smallest and largest retained EV of the lattice Laplacian normalized by their plateau average ($N_{cfg} = 26$). Lowest EV offset for legibility.

Preliminaries	Current Insertions in the stochastic Lap

Results ●000 Conclusion and Outlook

Phase Shifts in the Isovector Channel

Figure : Energies extracted using correlated single-exponential fits to rotated correlators in [1,1,1] E^+ in the fit window starting at t_{min} . Fill color indicates quality of fit with green dots having χ^2/d o.f. $\approx 1.$

11 / 20

Preliminaries	Current		

Results 00 0000 00000 Conclusion and Outlook

Phase Shifts in the Isovector Channel

Figure : Same for [001] A_1^+ . Grayed-out curves are checks of GEVP systematics with different numbers of operators and diagonalization times.

Preliminaries	Current Insertions in the stochastic Lap

Conclusion and Outlook

Phase Shifts in the Isovector Channel

Preliminaries	Current Insertions in the stochastic LapH framework

Conclusion and Outlook

Phase Shifts in the Isovector Channel

Argand diagram

14 / 20

Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results ○○ ●○○○○	Conclusion and Outlook
Extraction of Curre	nt Matrix Elements		

On the lattice, for a given total momentum and irrep, we compute

$$egin{aligned} C_{ij} &= \langle 0 | \mathsf{T} \; O_i(t+t_0) ar{O}_j(t_0) | 0
angle \ & ilde{C}_j &= \langle 0 | \mathsf{T} \; J(t+t_0) ar{O}_j(t_0) | 0
angle \end{aligned}$$

for the corresponding vector current J and a set of operators creating the states of interest at time t_0 .

- GEVP to extract excited states from $C_{ij} \Rightarrow C_{nn}^{(rot)}$
- use GEVP eigenvectors to obtain

$$ilde{C}_{\mathfrak{n}}^{(\mathrm{rot})} \stackrel{t \to \infty}{\to} \langle 0 | J | \mathfrak{n} \rangle \left< \mathfrak{n} | \bar{O}_{\mathfrak{n}}^{(\mathrm{rot})} | 0 \right> \mathrm{e}^{-\mathcal{E}_{\mathfrak{n}}(t-t_0)}$$

Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results ○○ ○○○○ ○●○○○	Conclusion and Outlook
Extraction of Curre	ent Matrix Elements		

$$\tilde{C}_{\mathfrak{n}}^{(\text{rot})} \stackrel{t \to \infty}{\to} \langle 0 | \mathcal{J} | \mathfrak{n} \rangle \langle \mathfrak{n} | \bar{\mathcal{O}}_{\mathfrak{n}}^{(\text{rot})} | 0 \rangle e^{-\mathcal{E}_{\mathfrak{n}}(t-t_0)}$$

Now form appropriate ratios to cancel remaining terms:

$$R_{1} = \frac{\tilde{C}_{n}^{(rot)}}{\sqrt{C_{nn}^{(rot)}}e^{-\frac{1}{2}E_{n}(t-t_{0})}} \quad \text{using correction}$$

$$R_{2} = \frac{\tilde{C}_{n}^{(rot)}\sqrt{\left|\langle \mathfrak{n}|\bar{O}_{n}^{(rot)}|\mathbf{0}\rangle\right|}}{C_{nn}^{(rot)}} \quad \text{using correction}$$

$$R_{3} = \frac{\tilde{C}_{n}^{(rot)}}{\left|\langle \mathfrak{n}|\bar{O}_{n}^{(rot)}|\mathbf{0}\rangle\right|e^{-E_{n}(t-t_{0})}} \quad \text{using e}$$

$$\Rightarrow \text{ all } |R_{i}| \xrightarrow{t \to \infty} |\langle \mathbf{0}|J|\mathfrak{n}\rangle|$$

using correlators and extr. energies

using correlators and extr. overlaps

using extr. overlaps and energies

Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results ○○ ○○○○ ○○●○○	Conclusion and Outloo
Extraction of Curre	nt Matrix Elements		
-1 -1 -1 -1 -1			

-20

-22

5

10

15

t

Figure : Bare current matrix element for first and second excited state in [0,0,1] A_1^+ from R_i .

-7

ov. + en.

corr. + ov

corr. + en.

25

20

ov. + en.

corr. + ov.

corr. + en.

15

10

t

5

Preliminaries 00000	Current Insertions in the stochastic LapH framework 000	Results 00 0000 000●0	Conclusion and Outlook
Extraction of Curre	nt Matrix Elements		

 $\mathcal{O}(a)$ -improvement and renormalization

The $\mathcal{O}(a)$ -improved and renormalized vector current reads

$$V^{(ext{imp, ren})}_{\mu} = Z_V \left(1 + b_V am
ight) \left(ar{\psi} \gamma_{\mu} \psi + \mathrm{i} a c_V \partial_{
u} \left\{ar{\psi} \sigma_{\mu
u} \psi
ight\}
ight)$$

perturbative b_V and c_V (1-loop) [Aoki, Frezzotti, Weisz 1998]
 Z · r_m · am = am_{PCAC} [M. Bruno, private communication]
 nonperturbative Z_V from χSF (preliminary) [M. Dalla Brida, private communication]

Preliminaries	Current Insertions in the stochastic LapH framework	Results	Conclusion and Outlook
00000	000	00	
		0000	

Extraction of Current Matrix Elements

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > 19/20

Prel		

Results 00 0000 00000 Conclusion and Outlook

- boundary effects from simulations with open temporal BC seemingly uncritical in spectroscopy applications
- self-contained computation on the timelike pion form factor feasible
- plan to obtain significantly more statistics: twice the number of configs and another source time per config
- might improve uncertainties beyond the naive MC estimates
 - better resolution of GEVP
 - stabilization of correlated fits
 - finite volume methods highly nonlinear