Decay constants f_B and f_{B_s} from HISQ simulations

Carleton DeTar (Fermilab Lattice and MILC collaborations)

University of Utah

July 16, 2015

Fermilab Lattice and MILC Collaborations

A. Bazavov	U. Iowa	J. Komijani	Washington U.
C. Bernard	Washington U.	A.S. Kronfeld	Fermilab
C. Bouchard	Willam & Mary	J. Laiho	Syracuse U.
N. Brown	Washington U.	P.B. Mackenzie	Fermilab
C. D.	U. Utah	C. Monahan	U. Utah
D. Du	Syracuse U.	E.T. Neil	U. Colorado
A.X. El-Khadra	U. Illinois	J.N. Simone	Fermilab
E.D. Freeland	SAIC	R.L. Sugar	U.C. Santa Barbara
E. Gamiz	U. Granada	D. Toussaint	U. Arizona
S. Gottlieb	Indiana U.	R.S. Van de Water	Fermilab
Heechang Na	U. Utah	R. Zhou	Fermilab
U.M. Heller	APS		

Need for precise values of f_B and f_{B_s}

- ▶ Provide accurate SM predictions for rare decays such as $B \rightarrow \tau \nu$, neutral *B* mixing, and $B_s \rightarrow \mu^+ \mu^-$.
- Probe the V A structure of the *Wub* vertex.
- Resolve/sharpen tension between inclusive and exclusive $|V_{ub}|$.

What is new in this work?

► Follows method for HISQ heavier than charm from HPQCD [1110.4510]

- Incorporates HQET in the chiral/continuum analysis model
- HISQ decay constants don't need renormalization
- Compared with HPQCD, we use HISQ ensembles (they used asqtad) and physical-mass light quarks. Statistics.
- Extend our earlier calculation of f_D, etc using HISQ light and charm quarks. [PRD 90, 074509]
 - Now we have data with HISQ heavier than charm
- Use five lattice spacings as small as 0.045 fm.
- ► Results preliminary. Will present methodology and error projection.

Ensembles and heavy quark masses

- Heavy quark masses vs lattice spacing
- Symbol size is proportional to data sample size
- Drop some m_h/m'_c points for data thinning and others to avoid large discretization errors (am_h > 0.9)

Heavy quark discretization errors

- Intermediate scale parameter $F_{p4s}(a \rightarrow 0) \approx 154$ MeV.
- We stop at $am'_c = 0.9$ and model heavy-quark effects below that.

Decay constant methodology

Pseudoscalar density-density correlator

$$C_{\mathrm{pt-pt}}(t)
ightarrow A_{\mathrm{pt-pt}} \exp(-M_{H_q}t)$$

Decay constant

$$f_{H_q} = (m_h + m_l) \sqrt{\frac{3 V A_{pt-pt}}{2 M_{H_q}^3}}$$

- ▶ Several heavy valence masses, so we use "H" instead of "B".
- ▶ We use *q* = {*u*, *d*, *s*}
- NOTE: No matching factors for HISQ pseudoscalar density.
- Calculate correlators with
 - Sources: random and Coulomb-gauge wall
 - Sinks: point
- ▶ Fit to 3+2 states and 2+1 states to check effect of excited states.

Example: two-point (3+2)-state spectrum vs D_{\min}

 Spectrum for a heavy-light meson with valence masses 4m_c, m_l vs D_{min}. (m_l = m_u = m_d)

- 0.045 fm physical mass ensemble
- Ground and excited state masses of both parities for a (3+2)-state fit.
- Inset magnifies ground state
- Priors constrain the excited state mass splittings.
- Vertical line shows our choice for D_{min}

C. DeTar (U Utah)

HQET

• Heavy quark effective theory (HQET) models the heavy-quark mass dependence of f_{H_a}

$$J^{
m QCD} \equiv C_i(m_Q,\mu) J^{
m HQET}_i(\mu) + \mathcal{O}(1/m_Q)$$

Wilson coefficient

$$C_{i}(m_{Q},\mu) = \left[\frac{\alpha_{S}(m_{Q})}{\alpha_{S}(\mu)}\right]^{-6/25} \left[1 + \mathcal{O}\left(\alpha_{S}(m_{Q}),\alpha_{S}(\mu)\right)\right] + \mathcal{O}\left(1/m_{Q}\right)$$

▶ So (using M_{H_s} at physical sea quark masses and physical *s* quark mass)

$$f_{H_q}\sqrt{M_{H_q}} = \left[\alpha_{\mathcal{S}}(M_{H_s})\right]^{-6/25} \left[1 + \mathcal{O}\left(\alpha_{\mathcal{S}}(M_{H_s})\right)\right] \Phi_{H_q}$$

where

$$\Phi_{H_q} = \tilde{\Phi}_0 \left(1 + k_1 \frac{\Lambda_{\rm HQET}}{M_{H_s}} + k_2 \frac{\Lambda_{\rm HQET}^2}{M_{H_s}^2} \right) (1 + {\rm chiral \ log/analytic \ terms})$$

► Discretization correction for LEC. [HPQCD, PRD 75, 054502].

$$\tilde{\Phi}_0 = \Phi_0 [1 + c_1 \alpha_S (a\Lambda)^2 + c_2 (a\Lambda)^4 + c_3 \alpha_S (am_h)^2 + c_4 (am_h)^4 + \dots]$$

Chiral expression

- Heavy-Meson Rooted All-Staggered χPT [Bernard and Komijani, PRD 88, 094017(2013)]
- ▶ Note chiral expression includes the $M_{H_q}^* M_{H_q}$ hyperfine splitting, which also depends on the heavy quark mass.
- Central fit: NLO, NNLO, NNNLO has 26 parameters

Adjustment for sea charm mass

Integrating out the charm quark yields an effective three-quark theory

$$\Lambda_{\rm QCD}^{(3)}(m_c) = \Lambda_{\rm QCD}^{(4)} \left[\frac{m_c}{\Lambda_{\rm QCD}^{(4)}} \right]^{2/21}$$

Starting from a fixed value of strong coupling at very high energy

$$\frac{\Lambda_{\rm QCD}^{(3)}(m_c')}{\Lambda_{\rm QCD}^{(3)}(m_c)} = \left[\frac{m_c'}{m_c}\right]^{2/27}$$

- Any hadronic quantity like f is proportional to $\Lambda_{\text{QCD}}^{(3)}$ at leading order
- For Φ_{H_q} in HQET/chiral limit we have

$$\Phi_0 \propto \left[\Lambda_{
m QCD}^{(3)}
ight]^{3/2} \ \Rightarrow \ rac{\Phi_0(m_c')}{\Phi_0(m_c)} = \left[rac{m_c'}{m_c}
ight]^{3/27}$$

Sea charm effects can be taken into account ($m_c = physical, m'_c = simulation$):

$$\Phi_{H_q} = \Phi_0 \left[\frac{m_c'}{m_c} \right]^{3/27} \left(1 + k_1 \frac{\Lambda_{\rm HQET}}{M_{H_s}} + k_2 \frac{\Lambda_{\rm HQET}^2}{M_{H_s}^2} + k_1' \frac{\Lambda_{\rm HQET}}{m_c'} \right) (1 + \text{chiral/analytic terms})$$

Sample chiral fit result: 0.045 fm data

Continuum extrapolation shown in cyan.

Sample chiral Fit result: 0.06 fm data

Continuum extrapolation shown in cyan.

Chiral Fits

 Illustration of growing heavy-quark discretization error. (First reported by HPQCD.)

Aside: Thinning the data

- Common problem: strong correlations in data lead to very small eigenvalues of the chiral fit correlation matrix and a nearly singular inverse.
- Eigenvectors for tiny eigenvalues characterize the correlations.
- SVD thinning procedure: drop some of the small eigenmodes. Specifically,
 - Introduce $r_{\rm cut}$ (say 10^{-3})
 - For each ensemble determine the largest eigenvalue λ_{\max}
 - Drop those modes with eigenvalue smaller than $r_{
 m cut}\lambda_{
 m max}$
 - Reduce d.o.f. by the number of dropped eigenvectors.

Stability under SVD cuts

Systematics: sampling of fit alternatives

- Error band estimates the full systematic error
- *f*_π: replace *f*_K with *f*_π in chiral terms
- ▶ g_π: let g_π float with prior 0.53(8)
- α_T Use α from measured taste splitting
- Thinned: Drop half the light quark masses.
- 37 param. Add 11 higher-order HQ terms + no SVD cut.
- Inputs: Alternative F_{4ps} scale determination.

Histogram

Includes 132 plausible analysis variations.

• Use extrema and symmetrize to estimate the systematic error.

Projected error budget

	f_{B^+}	f _{Bs}
Histogram*	2.1	1.4 MeV
Statistics	0.6	0.5
Charm sea-quark mass tuning	—	_
Finite volume	0.2	0.3
E. M.	0.1	0.1
Scale (f_{π})	0.3	0.4
Total	2.2	1.5 MeV

 * Includes chiral fit, light- and heavy-quark discretization, excited state contamination.

Comparison with other results

[Updates Chris Bouchard, Lattice 14]

Shows only our projected error. Take the FLAG 2013 central value for now.

C. DeTar (U Utah)

Conclusion and Outlook

- ▶ We have presented the status of our analysis of f_B and f_{B_s} from a calculation with all HISQ quarks à la HPQCD.
- The errors are much reduced compared with Fermilab quarks (next talke) because HISQ needs no matching factors.
- The errors are reduced compared with the HPQCD HISQ study in [1110.4510].
 - Physical mass ensembles, especially at 0.045 fm help anchor the chiral analysis
 - The data set is larger, and we do a chiral extrapolation.
 - HISQ sea quarks have smaller discretization errors than asqtad.
- We are generating a 0.03 fm $(m_{ud}/m_s = 0.2)$ ensemble $(am_b = 0.6)$. Analysis is in progress.

Backup Slides

Heavy-Meson Rooted All-Staggered χ PT

[Bernard and Komijani, Phys. Rev. D88 (2013) 9, 094017]

(1 + chirallog/analytic terms) $= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \left\{ -\frac{1}{16} \sum_{\mathcal{S}, \Xi'} \ell(m_{\mathcal{S}_{\mathcal{X}}, \Xi'}^2) - \frac{1}{3} \sum_{i \in \mathcal{M}^{(3, \kappa)}} \frac{\partial}{\partial m_{\mathcal{X}, I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3, \kappa)}; \mu_I^{(3)}) \ell(m_j^2) \right] \right\}$ $-\left(a^2\delta'_V\sum_{i\in\mathcal{M}^{(4,x)}}\frac{\partial}{\partial m^2_{X,V}}\left[R^{[4,3]}_j(\mathcal{M}^{(4,x)}_V;\mu^{(3)}_V)\ell(m^2_j)\right]+[V\to A]\right)$ $-3g_{\pi}^{2}\frac{1}{16}\sum_{\alpha=-\prime}J(m_{\mathcal{S}_{X},\Xi^{\prime}},\Delta^{*}+\delta_{\mathcal{S}_{X}})$ $-g_{\pi}^{2}\sum_{i\in\mathcal{M}^{(3,\times)}_{I}}\frac{\partial}{\partial m_{X,I}^{2}}\left[R_{j}^{[3,3]}(\mathcal{M}_{I}^{(3,\times)};\mu_{I}^{(3)})J(m_{j},\Delta^{*})\right]$ $-3g_{\pi}^{2}\left(a^{2}\delta_{V}^{\prime}\sum_{i\in\mathcal{M}^{(4,x)}}\frac{\partial}{\partial m_{X,V}^{2}}\left[R_{j}^{[4,3]}(\mathcal{M}_{V}^{(4,x)};\mu_{V}^{(3)})J(m_{j},\Delta^{*})\right]+[V\rightarrow A]\right)\right\}$ $+\left(L_s+L_{s,M}\frac{\Lambda_{\rm HQET}}{M_{U_s}}\right)(2m_l+m_s)+\left(L_v+L_{v,M}\frac{\Lambda_{\rm HQET}}{M_{U_s}}\right)(m_v)+c_{a,\Xi}a^2\;.$

Topological charge history

