Strong coupling expansion of the t-V model MARCIN SZYNISZEWSKI^{*,1,2}, EVGENI BUROVSKI¹

¹*Physics Department, Lancaster University, Lancaster, LA1 4YB, UK* ²NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK * E-mail for corresponding author: mszynisz@gmail.com

	●●0000	$\frac{1}{6}U_1$		
	●○●○○○	$\frac{1}{6}(U_2 + U_4)$	U ₃	
	●●000●000	$\frac{1}{9}(U_1 + 2U_4)$		
		$\frac{1}{9}(2U_2 + U_4)$		
	●○●○○●○●○○○○	$\frac{1}{12}(2U_2+U_3)$	0	
	••••0000•0•0000•0•0	$100 \frac{1}{21}(2U_1 + 3U_2)$	0	
	h L.			<i>U</i> ₁
	For $Q = \frac{1}{p+1} \rightarrow$ one trivial phase			
	For $Q = \frac{1}{n} \rightarrow$ phases can be described in detail			
	For $Q = \frac{1}{n-1}$, etc. \rightarrow number of phases increases			
	rapidly: no simple way of description			
	e e e e e e e e e e e e e e e e e e e		.p	
= ////	For a non-zero kinetic energy $(t \neq 0)$ [4]:			
	Phases with long range interactions			
	(e.g. bond order)			
	Luttinger liquid despite			
	critical density			
Strong Simp				
		C	oupling	nighe
	Possible	ex	pansion	numer
	further		-	

LANCASTER UNIVERSITY

easily obtained

With every SCE step we are increasing the accuracy by two orders in λ .

results for both REFERENCES integrable and Temperature non-integrable dependence models Time dependence [1] G. Gómez-Santos, PRL, 70, 3780 (1993), R.G. Dias, PRB, 62, 7791 (2000). [2] R. Orbach, Phys. Rev., 112, 309 (1958). [3] C.J. Hamer, Phys. Lett. B, 82, 75 (1979), D.P. Crewther and C.J. Hamer, Nucl. Phys. B 170, 353 (1980). [4] P. Schmitteckert, R. Werner, PRB 69, 195115 (2004); T. Mishra et al., PRB 84, 115135 (2011).

Engineering and Physical Sciences Research Council

work:

High precision

The University of Manchester