Lattice calculation of the HVP contribution to the anomalous magnetic moment of muon

Bipasha Chakraborty

University of Glasgow HPQCD Collaboration*

*Christine Davies, *Pedro Gonalves de Oliveira, *Jonna Koponen,

*G. Peter Lepage

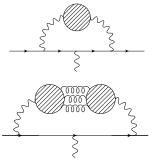
Lattice 2015 Kobe, Japan July 14th, 2015

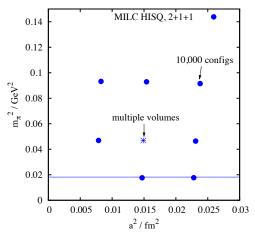
HVP contribution to muon (g-2) from LQCD

Current status of muon g-2

- BNL E821 0.54 ppm; planned 4-fold improvement in Fermilab E989.
- Overall theoretical uncertainty in a_{μ} : 0.42 ppm.

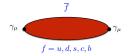
Contribution	Result (x 10 ⁻¹⁰)	Error
QED (leptons)	11658471.8	0.00 ppm
HVP(lo) [1]	692.3	0.36 ppm
HVP(ho)	-9.8	0.01 ppm
HLbL [2]	10.5	0.22 ppm
EW	15.4	0.02 ppm
Total SM	11659180.2	0.42 ppm


[1] Davier et. al., Eur. Phys. J. C71 (2011) 1515 :


dispersion relation + cross section for e^+e^- (and τ) \rightarrow hadrons with 0.7% uncertainty; [2] Prades, et.

al., 0901.0306.

- g-2 discrepancy around 3σ between the SM and the expt.: $a_{\mu}^{exp} a_{\mu}^{SM} = 25(9)x10^{-10}$.
- Calculate lowest order hadronic vacuum polarisation a^{HVP,lo} from lattice QCD with < 0.5% uncertainty by 2017/18.


HVP (conn. + disc.)

- Light (up/down), strange, charm (2+1+1) quarks in sea: $m_l = m_s/5, m_s/10, m_s/27.5$ (physical).
- *a* ≈ 0.15fm (very coarse), 0.12fm (coarse), 0.09fm (fine).
- Large box size: 5-6 fm on the finest lattices; finite volume effects tested.
- High statistics: random color wall sources, 1000 (or 10,000) configurations and 16 time sources.

HPQCD analysis method

$$a^{
m (f)}_{\mu,
m HVP}=rac{lpha}{\pi}\int dq^2 f(q^2)(4\pilpha Q_{
m f}^2)\hat{\Pi}_{
m f}(q^2)$$

55.0

54.5

53.0

52.5

0.005 0.010 0.015 0.020 0.025

0101 54.0 × 53.5 (Lautrup,'72, T. Blum,'02)

 $a^2 \,({\rm fm}^2)$

 1% precision for strange (and charm) qurak case; vector correlators reproduce accurately physical properties

of ϕ and J/ψ mesons [1208.2855, 1410.8466].

- Reconstruct Â(q²) from its derivatives at q² = 0

 + Padé approximants [2,2] to calculate vacuum polarization at arbitrary Euclidean q²:
 Â(q²) = ∑_{j=1}[∞] q^{2j}Π_j
- Time moments (n = 4,6,8,10) of (local-local) vector meson correlators give the derivatives:

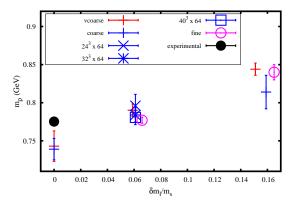
$$\begin{array}{lll} G_{2n} & \equiv & a^4 \sum_t \sum_{\vec{x}} t^{2n} Z_V^2 \langle j^i(\vec{x},t) j^i(0) \rangle \\ \\ & = & (-1)^n \left. \frac{\partial^{2n}}{\partial q^{2n}} q^2 \hat{\Pi}(q^2) \right|_{q^2=0}. \end{array}$$

And
$$\Pi_j = (-1)^{j+1} \frac{G_{2j+2}}{(2j+2)!}$$
.

[Ref: Chakraborty et. al., PRD89(2014)114501, arXiv:1403.1778]

New issues for 1% uncertainty in u/d connected case: Handling ρ meson on lattice

• Correlators much noisier: Use data-fit hybrid correlator to control noise at large t:


$$G(t) = \begin{cases} G_{data}(t) & \text{for } t \le t* \text{ from Monte Carlo,} \\ G_{fit}(t) & \text{for } t > t* \text{ from multi-exponential fit.} \end{cases}$$

for t^{*} = 1.5fm = $6/m_{\rho}$ (70% result from G_{data}) (same results to within $\pm \sigma/4$ with 0.75fm).

- Gaussian smearings to obtain precise ρ ground state (25-30% gain in uncertainty in a^{u/d}_μ).
- 80% of light quark vaccum polarisation contribution from ρ meson pole, need to understand ρ better.

New issues for 1% uncertainty in u/d connected case: Handling ρ meson on lattice

Finite volume, finite lattice spacing errors: m_ρ and f_ρ too low; Significant impact on g-2.

Rescale Π^{latt}: Reduces or eliminates errors from scale setting, Z factors, a², finite volume, m_l/m_s tuning (elaboration of ETMC idea in arXiv:1308.4327).

Bipasha Chakraborty, Glasgow ()

HVP contribution to muon (g-2) from LQCD

Rescaling to Taylor coefficients

• At large time we expect *C*_{II} to behave as:

$$C_{II,gs}=rac{f_
ho^2 m_
ho}{2}e^{-m_
ho t}$$

Π_j behaves as:

$$\Pi_{j,c} = (-1)^{j+1} rac{f_
ho^2}{m_
ho^{2j+2}}$$

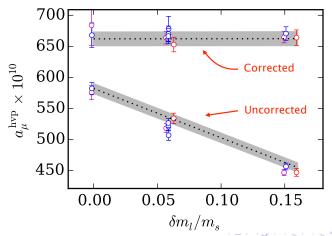
Correction to the Taylor coefficients Π_j:

$$\Pi_{j}^{latt} \to \Pi_{j}^{latt} \bigg[\frac{m_{\rho}^{2+2j}}{f_{\rho}^{2}} \bigg]_{latt} \bigg[\frac{f_{\rho}^{2}}{m_{\rho}^{2+2j}} \bigg]_{expl}$$

• Experimental f_{ρ} is obtained from the decay width of $\rho \rightarrow e^+e^-$ using:

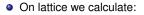
$$\Gamma(
ho
ightarrow e^+ e^-) = rac{4\pi}{3} lpha_{QED}^2 rac{f_
ho^2}{m_
ho} e_{u/a}^2$$

< D > < A > < B > < B >

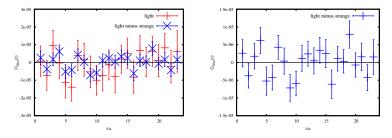

New issues for 1% uncertainty in u/d connected case: Handling $\pi\pi$ loop contribution on lattice

- $\pi\pi$ loop contribution ~10% of the total light quark contribution.
- Highly sensitive to m_{π} (contribution roughly proportional to $1/m_{\pi}^2$) and finite volume.
- Staggered quark introduces extra discretisation artefacts from different taste π meson.
- Remove lattice ππ contribution using one-loop, staggered quark, finite-volume ChPT.
- Restore ππ contribution using one-loop continuum ChPT, with physical π mass.
- Scaling gives:

$$\Pi_{j}^{latt} \rightarrow (\Pi_{j}^{latt} - \Pi_{j}^{latt}(\pi\pi)) \left[\frac{m_{\rho}^{2+2j}}{f_{\rho}^{2}}\right]_{latt} \left[\frac{f_{\rho}^{2}}{m_{\rho}^{2+2j}}\right]_{expt} + \Pi_{j}^{cont}(\pi\pi)$$


HPQCD preliminary Results: $a_{\mu}^{u/d}$ (Connected)

- Corrected results independent of m_l/m_s , a^2 , finite volume.
- [2,2] Padé approximants converged to better than 0.2%: negligible error.
- Total uncertainty is around 1.7%; statistics dominate.


Connected Light-Quark Contribution

Disconnected correlators

$$G_{disc}(x_0 - y_0) = -Z_V \langle (\sum_{\vec{x}} Tr[\gamma_k D^{-1}(x, x)]) (\sum_{\vec{y}} Tr[\gamma_k D^{-1}(y, y)]) \rangle$$

 All-to-all propagator method with 50 stochastic noise vectors on each configuration, one-link spatial vector currents for (I-s) on both sides.

 correlators from *I* – *s* vector currents at each end are much less noisy (consistent with Mainz group, arXiv:1411.7592); about 60% reduction in uncertainty compared to light quark case on *m_l/m_s* = 0.2 very coarse lattice.

Bipasha Chakraborty, Glasgow ()

HVP contribution to muon (g-2) from LQCD

HPQCD Estimation of Disconnected contribution to $a_{\mu}^{HVP,lo}$

- Disconnected u/d piece D_{II} dominates (Hadspec collaboration (arXiv:1309.2608)).
- Assuming D_{II} provide difference between ω and ρ , at large t,

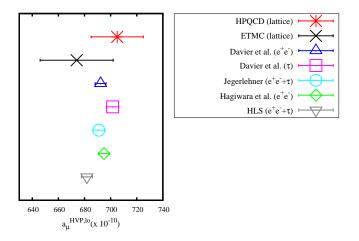
$$2\mathsf{D}_{II,gs} = -\frac{f_{\rho}^2 m_{\rho}}{2} e^{-m_{\rho}t} + \frac{f_{\omega}^2 m_{\omega}}{2} e^{-m_{\omega}t}$$

• Ratio of the moments from D_{\parallel} to that from C_{\parallel} :

$$R_{j} = \frac{\prod_{j,d}}{\prod_{j,c}} = \frac{1}{2} \left[\frac{m_{\rho}^{2+2j} f_{\omega}^{2}}{m_{\omega}^{2+2j} f_{\rho}^{2}} - 1 \right]$$

• From experiment, $m_{\rho} = 0.775 \text{ GeV}$, $f_{\rho} = 0.217$, $m_{\omega} = 0.783 \text{ GeV}$ and $f_{\omega} = 0.195 \text{ GeV}$: $R_1 = -0.025$; $R_2 = -0.026$; $R_3 = -0.028$ i.e. less than 3%.

$$a_{\mu, ext{disc}}/a_{\mu, ext{conn}}pprox -3\%$$
 .


Contribution	Result (x 10 ⁻¹⁰)	
light, conn	662(11)	(preliminary)
strange, conn	53.4 (6)	(1403.1778)
charm, conn	14.4(4)	(1403.1778,
		1208.2855)
bottom, conn	0.27(4)	(1408.5768)
disconn.	-25(15)	added -7 from $\pi\pi$
(estimate)		to simple estimate*
Total	705(20)	

 $[*a_{\mu}^{(\pi\pi)} = 71x10^{-10}$ and we considered -10% of this following partially quenched ChPT.]

The uncertainty in the total $a_{\mu}^{HVP,lo}$ is dominated by our estimation of disconnected piece.

• • • • • • • • • • • • •

Comparison of total $a_{\mu}^{HVP,lo}$ with phenomenology

(日)

Conclusion

To summarize:

- HPQCD preliminary for total a^{HVP,lo} using HISQ : 705(20) ×10⁻¹⁰(~ 2.8% uncertainty)
- First principle result including 2+1+1 dynamical sea quarks, physical valence quarks and pion masses, takes finite volume effects into account.

Future:

- Collaborating with MILC for using large ensemble size (10,000 on ~0.12fm lattices).
- Need to understand ρ meson better on lattice.
- Get a better precision from disconnected diagrams : collaborating with Hadron Spectrum collaboration.

→ Ξ →