Introduction 00 staggered definition

Computung j_{μ} 0000000 Computung $j_\mu j_\mu$ 00

Preliminary resul

Conclusions

Disconnected contribution to hadronic vacuum polarization

Bálint Tóth

for BMWc

July 18, 2015

Introduction ●0	Staggered definition	Computung j_{μ}	Computung $j_\mu j_\mu$ 00	Preliminary results	Conclusions 0	
Introduction						

• EM current of quarks

$$j_{\mu}(x) = \sum_{f} Q_{f} \overline{\psi}^{(f)}(x) \gamma_{\mu} \psi^{(f)}(x)$$

 Q_f : electric charge of flavor f.

$$Q_u = rac{2}{3}, \quad Q_d = -rac{1}{3}, \quad Q_s = -rac{1}{3}, \quad Q_c = rac{2}{3}$$

• Hadronic vacuum polarization

$$\begin{split} \Pi_{\mu\nu}(Q) &= \int \mathrm{d}x \ e^{iQx} \ \langle j_{\mu}(x) j_{\nu}(0) \rangle = \\ &= \frac{1}{TV} \int \mathrm{d}x \int \mathrm{d}y \ e^{iQ(x-y)} \ \langle j_{\mu}(x) j_{\nu}(y) \rangle \end{split}$$

$$\Pi_{\mu\nu}(Q) = (Q^2 \delta_{\mu\nu} - Q_\mu Q_\nu) \Pi(Q^2)$$

• $\Pi(Q^2)$ is useful for e.g. anomalous magnetic moment of muon

Introduction 0	Staggered definition	Computung j_μ	Computung $j_\mu j_\mu$ 00	Preliminary results	Conclusions 0
Outline					

- Staggered definition
- 2 Computing the current
- 3 Computing the correlator
- Preliminary results

Introduction 00	Staggered definition	Computung j_μ	Computung $j_\mu j_\mu$ 00	Preliminary results	Conclusions 0
Outline					

Staggered definition

- 2 Computing the current
- 3 Computing the correlator
- Preliminary results
- **5** Conclusions

$\begin{array}{c|cccccc} Introduction & Staggered definition & Computung j_{\mu} & Computung j_{\mu}j_{\mu} & Preliminary results & Conclusions & o \\ \hline Staggered definition of current-current correlator & \hline \end{array}$

• Introduce U(1) phase $c_{x,\mu}$ on links:

$$\left(M^{(f)}(c)\right)_{x,y}^{ab} = \frac{1}{2} \sum_{\mu} \left(\delta_{y,x+\mu} U_{x,\mu}^{ab} e^{iQ_{f}c_{x,\mu}} - \delta_{y,x-\mu} \left(U_{x-\mu,\mu}^{\dagger}\right)^{ab} e^{-iQ_{f}c_{x-\mu,\mu}}\right) + m_{f}\delta_{x,y}\delta^{ab}$$

Staggered phase is absorbed into $U_{x,\mu}$.

Partition function:

$$Z(c) = \int dU \, e^{-S_g(U)} \, \prod_f \left(\det M^{(f)}(c) \right)^{1/4}$$

• Define current-current correlator as 2nd derivative:

$$egin{aligned} & \langle j_{\mu}(x) j_{ar{\mu}}(ar{x})
angle &= i \, rac{\partial}{\partial m{c}_{x,\mu}} \, i \, rac{\partial}{\partial m{c}_{ar{x},ar{\mu}}} \log Z(m{c}) \, \Big|_{m{c}=0} = \ & = \langle j_{\mu}(x) j_{ar{\mu}}(ar{x})
angle_{ ext{connected}} + \langle j_{\mu}(ar{x}) j_{ar{\mu}}(ar{x})
angle_{ ext{connected}}$$

Introduction Staggered definition Computing j_{μ} Computing $j_{\mu}j_{\mu}$ Preliminary results Conclusions of Contributions to correlator

$$\langle j_{\mu}(\mathbf{x}) j_{\bar{\mu}}(\bar{\mathbf{x}}) \rangle_{\text{connected}} = \qquad \qquad \text{not this talk}$$
$$-\sum_{f} \frac{Q_{f}^{2}}{8} \operatorname{Retr}_{c} \left(\mathcal{M}^{(f)}{}_{x+\mu,\bar{x}}^{-1} \mathcal{U}_{\bar{x},\bar{\mu}} \mathcal{M}^{(f)}{}_{\bar{x}+\bar{\mu},x}^{-1} \mathcal{U}_{x,\mu} + \mathcal{M}^{(f)}{}_{x+\mu,\bar{x}+\bar{\mu}}^{-1} \mathcal{U}_{\bar{x},\bar{\mu}}^{\dagger} \mathcal{M}^{(f)}{}_{\bar{x},x}^{-1} \mathcal{U}_{x,\mu} \right)$$

$$\langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{contact}} = \delta_{x,\bar{x}} \delta_{\mu,\bar{\mu}} \sum_{f} \frac{Q_{f}^{2}}{4} \operatorname{Re} \operatorname{tr}_{c} \left(U_{x,\mu} \mathcal{M}^{(f)}{}_{x+\mu,x}^{-1}
ight)$$

vanishes due to q = 0 subtraction

Introduction 00	Staggered definition 00●0	Computung j_μ	Computung $j_\mu j_\mu$ 00	Preliminary results	Conclusions 0
Current	conservatio	n			

• Current is conserved in continuum:

$$rac{\partial}{\partial x_{\mu}} \langle j_{\mu}(x) j_{ar{\mu}}(ar{x})
angle = rac{\partial}{\partial ar{x}_{ar{\mu}}} \langle j_{\mu}(x) j_{ar{\mu}}(ar{x})
angle = 0$$

• On lattice, on each configuration:

$$\begin{split} \nabla^{(\mathbf{b})}_{\mu} \Big(\langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{conn.}} + \langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{contact}} \Big) &= \\ &= \bar{\nabla}^{(\mathbf{b})}_{\bar{\mu}} \Big(\langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{conn.}} + \langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{contact}} \Big) = 0 \\ & \nabla^{(\mathbf{b})}_{\mu} \langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{disc.}} = \bar{\nabla}^{(\mathbf{b})}_{\bar{\mu}} \langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{disc.}} = 0 \end{split}$$

with backward derivatives

$$\nabla^{(b)}_{\mu} f_{\mu,\bar{\mu}}(x,\bar{x}) = \sum_{\mu} \left(f_{\mu,\bar{\mu}}(x,\bar{x}) - f_{\mu,\bar{\mu}}(x-\mu,\bar{x}) \right)$$

$$\bar{\nabla}^{(b)}_{\bar{\mu}} f_{\mu,\bar{\mu}}(x,\bar{x}) = \sum_{\bar{\mu}} \left(f_{\mu,\bar{\mu}}(x,\bar{x}) - f_{\mu,\bar{\mu}}(x,\bar{x}-\bar{\mu}) \right)$$

• Consistency check of code possible

$$\begin{array}{l} \langle j_{\mu}(x) j_{\bar{\mu}}(\bar{x}) \rangle_{\text{disc.}} = \\ - \left[\sum_{f} \frac{Q_{f}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{x,\mu} \mathcal{M}^{(f)}{}_{x+\mu,x}^{-1} \right) \right] \times \left[\sum_{\bar{f}} \frac{Q_{\bar{f}}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\bar{x},\bar{\mu}} \mathcal{M}^{(\bar{f})}{}_{\bar{x}+\bar{\mu},\bar{x}}^{-1} \right) \right] \end{array}$$

• $\Pi(Q^2)$ depends only on $Q^2 \longrightarrow$ take $Q = ({\bf 0},q)$ and $\mu = 1,2,3$

$$\begin{array}{l} \left\langle j_{\mu}(t) j_{\bar{\mu}}(\bar{t}) \right\rangle_{\mathsf{disc.}} = -\frac{1}{V} \times \\ \underbrace{\left[\sum_{\underline{\mathbf{x}}} \sum_{f} \frac{Q_{f}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\mathbf{x}},t,\mu} \mathcal{M}^{(f)}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \right) \right]}_{j_{\mu}(t)} \times \underbrace{\left[\sum_{\underline{\overline{\mathbf{x}}}} \sum_{\bar{f}} \frac{Q_{\bar{f}}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\overline{\mathbf{x}}},\bar{t},\bar{\mu}} \mathcal{M}^{(\bar{t})}_{\underline{\overline{\mathbf{x}}}+\bar{\mu},\bar{t}\,;\,\underline{\overline{\mathbf{x}}},\bar{t}} \right) \right]}_{j_{\bar{\mu}}(\bar{t})} \end{array}$$

 Way to proceed: calculate j_μ(t) on each configuration, then correlate with itself.

Introduction 00	Staggered definition	Computung j_{μ}	Computung $j_{\mu}j_{\mu}$ 00	Preliminary results	Conclusions O
Outline					

- 2 Computing the current
- 3 Computing the correlator
- Preliminary results
- 5 Conclusions

Introduction 00	Staggered definition	Computung j_{μ}	Computung $j_\mu j_\mu$	Preliminary results	Conclusions 0
Reductio	on to even a	ites			

Reduction to even sites

$$\begin{split} \tilde{j}_{\mu}(t) &= \sum_{\underline{\mathbf{x}}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\mathbf{x}},t,\mu} M^{-1}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \right) = \\ &= \sum_{\underline{\mathbf{x}} \text{ even}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\mathbf{x}},t,\mu} M^{-1}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \right) + \sum_{\underline{\mathbf{x}} \text{ odd}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\mathbf{x}},t,\mu} M^{-1}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \right) \end{split}$$

Since
$$M^{-1}_{x+\mu,x} = \epsilon_{x+\mu} \epsilon_x \left(M^{-1}\right)^{\dagger}_{x+\mu,x} = -\left(M^{-1}\right)^{\dagger}_{x+\mu,x}$$

Odd part can be rewritten:

$$\sum_{\underline{\mathbf{x}} \text{ odd}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{\mathbf{x}},t,\mu} \mathcal{M}^{-1}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \right) = -\sum_{\underline{\mathbf{x}} \text{ odd}} \operatorname{Im} \operatorname{tr}_{c} \left(\left(\mathcal{M}^{-1} \right)^{\dagger}_{\underline{\mathbf{x}}+\mu,t\,;\,\underline{\mathbf{x}},t} \mathcal{U}_{\underline{\mathbf{x}},t,\mu} \right) = \\ = \sum_{\underline{\mathbf{x}} \text{ odd}} \operatorname{Im} \operatorname{tr}_{c} \left(\mathcal{U}_{\underline{\mathbf{x}},t,\mu}^{\dagger} \mathcal{M}^{-1}_{\underline{\mathbf{x}},t\,;\,\underline{\mathbf{x}}+\mu,t} \right) = \sum_{\underline{\mathbf{x}} \text{ even}} \operatorname{Im} \operatorname{tr}_{c} \left(\mathcal{U}_{\underline{\mathbf{x}}-\mu,t,\mu}^{\dagger} \mathcal{M}^{-1}_{\underline{\mathbf{x}}-\mu,t\,;\,\underline{\mathbf{x}},t} \right)$$

Combined:

$$ilde{J}_{\mu}(t) = \sum_{\underline{\mathtt{x}} \; ext{even}} \; \operatorname{Im} \operatorname{tr}_{\mathrm{c}} \left(\left(U_{\mu}^{+-} \; M^{-1}
ight)_{\underline{\mathtt{x}},t \; ; \; \underline{\mathtt{x}},t}
ight)$$

 $U^{+-}_{\mu}=$ (covariant shift in direction $\mu)$ + (covariant shift in direction $-\mu)$

$$\begin{split} & \underset{oo}{\text{Introduction}} \underbrace{\text{Staggered definition}}_{\text{OOOO}} \underbrace{\text{Computung } j_{\mu}}_{\text{OOOOOO}} \underbrace{\text{Computung } j_{\mu} j_{\mu}}_{\text{OOO}} \underbrace{\text{Preliminary results}}_{\text{OOOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{OOO}} \underbrace{\text{Conclusions}}_{\text{Conclusions}} \underbrace{\text{Conclusions}}_{\text{Conclusio$$

$$\begin{split} \tilde{j}_{\mu}(t) &= \left\langle \frac{1}{N} \sum_{r=1}^{N} \operatorname{Im} \left(\sum_{\underline{\mathbf{x}} \text{ even } \underline{\overline{\mathbf{x}}} \text{ even } \sum_{\bar{t}} \sum_{a,\bar{a}} \left(\xi_{\underline{\mathbf{x}},t,a}^{(r)} \right)^{*} \left(U_{\mu}^{+-} M^{-1} \right)_{\underline{\mathbf{x}},t,a\,;\,\overline{\mathbf{x}},\overline{t},\overline{a}} \xi_{\overline{\mathbf{x}},\overline{t},\overline{a}}^{(r)} \right) \right\rangle = \\ &= \left\langle \frac{1}{N} \sum_{r=1}^{N} \operatorname{Im} \left\langle \xi^{(r)} \middle| U_{\mu}^{+-} M^{-1} \xi^{(r)} \right\rangle_{t} \right\rangle = \left\langle \frac{1}{N} \sum_{r=1}^{N} j_{\mu}^{(r)}(t) \right\rangle \end{split}$$

Our choice: Z_2 random sources.

• We use isospin symmetric masses: $m_u = m_d = m_l$

$$j^{(u)} + j^{(d)} + j^{(s)} = \frac{2}{3}\tilde{j}^{(l)} - \frac{1}{3}\tilde{j}^{(l)} - \frac{1}{3}\tilde{j}^{(s)} = \frac{1}{3}\cdot\left(\tilde{j}^{(l)} - \tilde{j}^{(s)}\right) = \frac{1}{3}\tilde{j}^{(l-s)}$$

Noise reduction: Use same random vectors for *I* and *s*. see e.g. [Gülpers, Lattice2014]

Introduction Staggered definition Computing j_{μ} Computing $j_{\mu}j_{\mu}$ Preliminary results Conclusions ooo • 000 •

=
$$m + D$$
, $M^{\dagger} = m - D$, $M^{\dagger} M = m^2 - D$
 $M^{-1} = M^{\dagger} (M^{\dagger} M)^{-1} = \frac{m - D}{m^2 - D^2}$

Then the current:

w

$$\begin{split} \tilde{j}_{\mu}(t) &= \sum_{\underline{\mathbf{x}}} \, \mathrm{Im} \, \mathrm{tr}_{\mathrm{c}} \left(\left(U_{\mu} \, \frac{m-D}{m^2 - D^2} \right)_{\underline{\mathbf{x}},t \, ; \, \underline{\mathbf{x}},t} \right) = \\ &= \sum_{\underline{\mathbf{x}}} \, \mathrm{Im} \, \mathrm{tr}_{\mathrm{c}} \left(\left(U_{\mu}(-D) \, \frac{1}{m^2 - D^2} \right)_{\underline{\mathbf{x}},t \, ; \, \underline{\mathbf{x}},t} \right) \end{split}$$

• Rewrite the inverse using n^{th} degree polynomial $a_0 + a_1x + \cdots + a_nx^n$

$$\frac{1}{m^2 - D^2} = \sum_{k=0}^n a_k (D^2)^k + \frac{1}{m^2 - D^2} \sum_{k=0}^{n+1} \underbrace{\left(a_{k-1} - m^2 a_k\right)}_{b_k} \cdot (D^2)^k$$

ith $a_{-1} = 1$ and $a_{n+1} = 0$.

Current consists of two parts:

$$\widetilde{j}_{\mu}(t) = \sum_{k=0}^{n} a_{k} \underbrace{\sum_{\underline{\mathbf{x}}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\mu}(-D) \left(D^{2} \right)^{k} \right)_{\underline{\mathbf{x}},t\,;\,\underline{\mathbf{x}},t}}_{\mathbf{x},t\,;\,\underline{\mathbf{x}},t} + \\
+ \underbrace{\sum_{k=0}^{n+1} b_{k} \underbrace{\sum_{\underline{\mathbf{x}}} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\mu}(-D) \frac{\left(D^{2} \right)^{k}}{m^{2} - D^{2}} \right)_{\underline{\mathbf{x}},t\,;\,\underline{\mathbf{x}},t}}_{R_{\mu}^{(k)}(t)} + \\$$

- Recipe:
 - Calculate $K^{(k)}_{\mu}(t)$ exactly.
 - Calculate $R_{\mu}^{(k)}(t)$ using random vectors:

$$R_{\mu}^{(k)}(t) = \frac{1}{N} \sum_{r=1}^{N} \operatorname{Im} \left\langle \xi^{(r)} \right| U_{\mu}(-D) \frac{(D^2)^k}{m^2 - D^2} \xi^{(r)} \right\rangle_t$$

Use same random vector set for all k = 0, 1, ..., n + 1.

• Choose coefficients a_k such that the noise of $\sum_k b_k R_{\mu}^{(k)}(t)$ is minimal.

Introduction Staggered definition Computing j_{μ} Computing $j_{\mu}j_{\mu}$ Preliminary results Conclusions on one of the second second

$$\mathcal{K}^{(k)}_{\mu}(t) = \sum_{\underline{\mathbf{x}}} \, \mathrm{Im} \, \mathrm{tr}_{\mathrm{c}} \left(\mathcal{U}_{\mu}(-\mathcal{D}) \left(\mathcal{D}^2
ight)^k
ight)_{\underline{\mathbf{x}},t\,;\, \underline{\mathbf{x}},t}$$

• Computing
$${\cal K}^{(k)}_\mu(t) \longrightarrow$$
 calculate loops

•
$$k = 0$$
 $K^{(0)}_{\mu}(t) = 0$

...

- k = 1 1 loop of length 4 \longrightarrow plaquette
- k = 2 8 additional loops of length 6
- k = 3 167 additional loops of length 8
- k = 4 4402 additional loops of length 10

Introduction 00	Staggered definition	Computung j_μ	Computung $j_{\mu}j_{\mu}$	Preliminary results 0000	Conclusions 0
Outline					

- Staggered definition
- 2 Computing the current
- Computing the correlator
- Preliminary results
- 5 Conclusions

$$\begin{aligned} & \underset{O}{\text{Conduction}} & \underset{OOO}{\text{Staggered definition}} & \underset{OOOO}{\text{Computing } j_{\mu} j_{\mu}} & \underset{OOOO}{\text{Preliminary results}} & \underset{OOOO}{\text{Conclusions}} \\ & \text{Conclusions} \\ \end{aligned} \\ \hline \textbf{Estimator for the correlator} \\ & (j_{\mu}(t)j_{\bar{\mu}}(\bar{t}))_{\text{disc.}} = -\frac{1}{V} \times \\ & \underbrace{\left[\sum_{\underline{x}} \sum_{f} \frac{Q_{f}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{x},t,\mu} \mathcal{M}^{(f)}_{\underline{x}+\mu,t;\underline{x},t}\right)\right]}_{j_{\mu}(t)} \times \underbrace{\left[\sum_{\underline{x}} \sum_{\bar{f}} \frac{Q_{\bar{f}}}{4} \operatorname{Im} \operatorname{tr}_{c} \left(U_{\underline{x},\bar{t},\bar{\mu}} \mathcal{M}^{(\bar{f})}_{\underline{x}+\mu,t;\underline{x},t}\right)\right]}_{j_{\mu}(t)} \\ \bullet \frac{1}{N} \sum_{r=1}^{N} j_{\mu}^{(r)}(t) & \text{is unbiased estimator for } \tilde{j}_{\mu}(t). \\ \bullet \text{But } \left(\frac{1}{N} \sum_{r=1}^{N} j_{\mu}^{(r)}(t)\right) \left(\frac{1}{N} \sum_{\bar{r}=1}^{N} j_{\mu}^{(\bar{r})}(\bar{t})\right) & \text{is biased estimator for } \tilde{j}_{\mu}(t). \\ \tilde{j}_{\mu}(t)\tilde{j}_{\bar{\mu}}(\bar{t}) - \left\langle \left(\frac{1}{N} \sum_{r=1}^{N} j_{\mu}^{(r)}(t)\right) \left(\frac{1}{N} \sum_{\bar{r}=1}^{N} j_{\mu}^{(r)}(t)\right) \left(\frac{1}{N} \sum_{\bar{r}=1}^{N} j_{\mu}^{(r)}(\bar{t})\right) \right\rangle = \mathcal{O}\left(\frac{1}{N}\right) \\ \bullet \text{ Unbiased estimator: } \frac{1}{N^{2} - N} \sum_{r \neq \bar{r}} j_{\mu}^{(r)}(t) j_{\mu}^{(\bar{r})}(\bar{t}) \end{aligned}$$

Introduction 00	Staggered definition	Computung j_μ	Computung $j_{\mu}j_{\mu}$	Preliminary results	Conclusions 0
Unbiasi	ing				

Introduction 00	Staggered definition	Computung j_{μ}	Computung $j_\mu j_\mu$ 00	Preliminary results	Conclusions 0
Outline					

- Staggered definition
- 2 Computing the current
- 3 Computing the correlator
- Preliminary results
- **5** Conclusions

Introduction 00	Staggered definition	Computung j_μ	Computung $j_{\mu}j_{\mu}$	Preliminary results ●000	Conclusions 0
Observa	ble & Ensen	nbles			

• For
$$q^2>0$$

$$\Pi(q^2)=\sum_t \frac{\cos(qt)-1}{\hat{q}^2} \langle j_\mu(t)j_\mu(0) \rangle$$

with
$$\hat{q}^2 = 4 \sin^2 \left(\frac{q_2}{2}\right)$$

• For $q^2 = 0$

$$\Pi(0) = \lim_{q o 0} \sum_t \; rac{\cos(qt) - 1}{\hat{q}^2} \; \langle j_\mu(t) j_\mu(0)
angle = \sum_t \; -rac{t^2}{2} \; \langle j_\mu(t) j_\mu(0)
angle$$

Ensembles

• a = 0.134 fm, physical quark masses, $48^3 \times 64$ • a = 0.118 fm, physical quark masses, $56^3 \times 96$ • a = 0.095 fm, physical quark masses, $64^3 \times 96$ • a = 0.078 fm, physical quark masses, $80^3 \times 128$

Introduction 00	Staggered definition	Computung j_{μ}	Computung $j_{\mu}j_{\mu}$	Preliminary results 0000	Conclusions 0
Outline	1				

- Staggered definition
- 2 Computing the current
- 3 Computing the correlator
- Preliminary results

Introduction 00	Staggered definition	Computung j_{μ}	Computung $j_{\mu}j_{\mu}$ 00	Preliminary results	Conclusions •
Conclus	ions & Outl	ook			

- Conclusions
 - Noise reduction techniques to compute j_{μ}
 - First results at 3 lattice spacings
- Outlook
 - Look for further noise reduction techniques
 - Evaluate on finer lattice
 - Study systematics (e.g. moments vs. Padé fits)