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• Discrepancy between                           mainly coming from hadronic contributions  

• Once the aimed precision (<1%) for the connected HVP from the lattice is achieved (in the 

isosymmetric theory) —> the effects we neglected so far might become important:  

- disconnected contribution,  
- isospin breaking corrections,  
- charm in the sea, … 

• In the phenomenological determination of           ,  model calculation of  [Jegerlehner,Szafron ’11] 

➡ correctly applied IB correction reduced the discrepancy between           and     data   

• Not clear how this translates to the Euclidean 

• It would be good to have a model independent estimate of IB effects: lattice QCD+QED 

• Note: systematic analysis based on the     data may also benefit knowing how big/small this 
effect is

Motivation I: computing IB correction to the HVP
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Motivation II: the method to compute IBE

• All necessary ingredients are, in principle, there 

• R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE) 

➡ Expanding an observable (in the isospin broken theory) with respect to the isosymmetric QCD 
result 

• For a start: applying it to the connected part of the HVP 

• Main advantage w. respect to simulating QED+QCD: 

➡ Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡ No extrapolation in ↵em

O(↵em) O(mu �md)



The method I: LIBE in practice (R123)
• Reusing the gauge configurations generated in the isosymmetric theory 

• Reweighting:  

• For simplicity, approximate sea quarks as electrically neutral:  

• …once an appropriate renormalisation procedure is applied:  

• Example:
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The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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Figure 2: LIBE corrections to the quark propagator (at fixed gauge QCD background) in the graphical notation of
ref. [7]. The contributions contained in the red box are absent in the electroquenched approximation. The contributions
contained in the blue box do not “read” the charge of the valence quarks and are therefore isosymmetric.

Figure 3: Example of a non factorable diagram contributing to the physical leptonic decay rate at O(âem). In general,
the sum of factorable contributions is not QED gauge invariant, infrared divergent and, consequently, unphysical.

the different graphical contributions can be found in ref. [7]. The contributions of Figure 2 con-
tained in the red box are absent in the electroquenched approximation. The “isosymmetric vacuum
polarization” terms, those contained in the blue box, do not “read” the charge of the valence quarks
and are expected to be sizeable (see ref. [8] for a first numerical evidence). The polarization effects
proportional to the charges of the valence quarks are a flavour SU(3) breaking effect. In the case of
pseudoscalar meson masses these can be estimated by the knowledge of the low energy constants
entering the leading order chiral perturbation theory lagrangian in presence of electromagnetic in-
teractions [12].

The starting point of the calculation of LIBE on the mass of a given hadron H is the full theory
two-point correlator

CHH(t;~g) = h OH(t) O†
H(0) i~g �! eMH =

CHH(t �1;~g)

CHH(t;~g)
+ non leading exps. , (4.2)

where OH is an interpolating operator with the quantum numbers of H. If H is a charged particle,
the correlator CHH is not QED gauge invariant. For this reason it is not possible, in general, to ex-
tract physical information directly from the residues of the different poles. This can be understood
by noting that to physical decay rates contribute diagrams as the one shown in Figure 3. On the
other hand, the mass of the hadron is gauge invariant and, provided that the parameters of the ac-
tion have been properly renormalized, both ultraviolet and infrared finite. It follows that (for large
times) the ratio CHH(t � 1;~g)/CHH(t;~g) is both gauge and renormalization group (RGI) invariant.
By expanding the numerator and the denominator of this ratio one gets a formula for LIBE on

7

R[U,A;~g,~g0] = 1
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lattice calculations of IBE require simulations of what we call the full theory4, i.e. QCD+QED.
Full theory observables are defined in terms of the following path-integral average5

~g =
⇣

e2,g2
s ,mu,md ,ms

⌘

, hOi~g =

R

dAe�S[A] dU e�bS[U ] ’ f det(D f [U,A;~g]) O[U,A;~g]
R

dAe�S[A] dU e�bS[U ] ’ f det(D f [U,A;~g])
.

(2.1)

The direct generation of QCD+QED gauge configurations is possible, in principle, with lattice
fermion actions such that the determinant of the single flavour is real and positive-definite. In
practice this procedure would be too much expensive or at least unpractical. It is much more
efficient to re-use the gauge configurations generated in the isosymmetric theory6,

~g0 =
⇣

0,(g0
s )

2,m0
ud ,m

0
ud ,m

0
s

⌘

, hOi~g0
=

R

dU e�b 0S[U ] ’ f det
�

D f [U ;~g0]
�

O[U ;~g0]
R

dU e�b 0S[U ] ’ f det(D f [U ;~g0])
.

(2.2)

This can be done by introducing the “QED path-integral average” and a reweighting factor

hOiA =

R

dA e�S[A] O[A]
R

dA e�S[A]
, R[U,A;~g,~g0] = e�(b�b 0)S[U ] ’

f

det(D f [U,A;~g])

det(D f [U ;~g0])
, (2.3)

and by writing hOi~g as follows

hOi~g =

⌦

R[U,A;~g,~g0] O[U,A;~g]
↵A,~g0

⌦

R[U,A;~g,~g0]
↵A,~g0 . (2.4)

The formulae above and the numerical calculations are much more simple in the so-called “elec-
troquenched” approximation, i.e. by considering sea quarks as electrically neutral particles. This
“rough” approximation leads to a non-unitary theory and is obtained by setting

R[U,A;~g,~g0] 7! 1 . (2.5)

Electroquenched QED ensembles can be obtained easily and efficiently with heat-bath algorithms.
The first pioneering lattice calculation of IBE has been performed in ref. [5] by relying on the

electroquenched approximation. In that reference and also in the more recent works on the subject
QED has been simulated in the non-compact formulation: the gauge potential Aµ(x) is a dynamical
variable and the QCD+QED links are obtained by exponentiation,

Uµ(x) 7! eie f eAµ (x) Uµ(x) . (2.6)

Imposing periodic boundary conditions for the gauge potential and a gauge fixing (here Feynman),

—�
µ Aµ(x) = 0 , S[A] =

1
2 Â

x
Aµ(x)

⇥

�—�
n —+

n
⇤

Aµ(x) , (2.7)

4We call isosymmetric theory QCD with the masses of the up and of the down set equal to the common value mud .
5The bare parameters of the full theory (ignoring heavy flavour masses) are collected in the vector ~g; b = 6/g2

s ;
Aµ (x) is the photon field, the dynamical variable in the non-compact formulation of QED (see below); D[U,A;~g] is the
preferred discretization of the Dirac operator.

6The vector ~g0 collects the bare parameters of the isosymmetric QCD.
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�O = O(~g)�O(~g0)

~g
~g0

- bare param. of the full th 
- bare param. of isosymm. th 



The method II: LIBE in practice (R123)

• Previous results by Rome123 collaboration [arXiv:1303.4896, arXiv:1311.2797] 

• Leading correction to different hadronic observables: pion/kaon mass splitting,  Dashen theorem 

breaking parameter, u-d quark mass difference … 

• Corrections function of the ratios of the correlators in the full and isosymmetric theory and give good 

numerical signal

Review by N.Tantalo @Lat2013
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Figure 4: Numerical results obtained in ref. [7] for the direct computation of LIBE on pion masses. Different colours
correspond to different (black coarser, blue finest) lattice spacings. Finite volume corrections, which are not negligible
(see discussion below), have not been taken into account yet in the plot.

spacings. The results for Mp+ �Mp0 shown in the right panel are obtained by taking the derivative
with respect to the time of the correlators in the left panel of the Figure. By comparing the left panel
of Figure 4 with the right panel of Figure 1 one can appreciate the quality of the numerical signals
usually obtained in direct calculations of LIBE. The point is that IBE are tiny because very small
coefficients multiply sizeable hadronic matrix elements. On the other hand, the direct approach to
LIBE requires in general the calculation of several contributions, see next section.

5. Separation of QCD from QED IBE

In the graphical notation of ref. [7] the kaon mass splitting is given by

MK+ �MK0 = �2Dmud∂t � (Dmcr
u �Dmcr

d )∂t

+ (e2
u � e2

d)e
2∂t

� �

+(eu � ed)e2 Â
f

e f ∂t . (5.1)

The contributions in the first line of the previous equation are the mass and critical mass counter-
terms. Whenever electromagnetic “self-energy” contributions are present, as in the second line of
eq. (5.1), the mass counter-terms are also present because these are needed to absorb the electro-
magnetic ultraviolet divergences.

Given the presence of the term proportional to Dmud = (md � mu)/2, the kaon mass splitting
can be used to determine the up-down mass difference and to define a prescription to separate
QCD from QED IBE. First note that since eu 6= ed there is a mixing in the renormalization of the
full theory between the parameters Dm̂ud and m̂ud ,

Dmud =
m̂d

2Zmd

� m̂u

2Zmu

= ZȳyDm̂ud +
m̂ud

Zud
. (5.2)

The renormalization constant Zȳy = 1/2Zmd +1/2Zmu has to be replaced with the renormalization
constant Z0

ȳy = 1/Zm of isosymmetric QCD while, to a first approximation, Zud can be safely

9



Technicalities

• Main general obstacle in implementing this method 

➡ many diagrams need to be computed 
➡ including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched 

approximaton) 

• Implementation: requires careful organisation of the computation of the diagrams:

• Leading correction: expanding in powers of the difference between bare param. in full and isosymm. th: 

• Leading IB corrections are computed: also in QED+QCD simulations                                are neglected 

Isospin Breaking Effects on the Lattice Nazario Tantalo
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Figure 4: Numerical results obtained in ref. [7] for the direct computation of LIBE on pion masses. Different colours
correspond to different (black coarser, blue finest) lattice spacings. Finite volume corrections, which are not negligible
(see discussion below), have not been taken into account yet in the plot.

spacings. The results for Mp+ �Mp0 shown in the right panel are obtained by taking the derivative
with respect to the time of the correlators in the left panel of the Figure. By comparing the left panel
of Figure 4 with the right panel of Figure 1 one can appreciate the quality of the numerical signals
usually obtained in direct calculations of LIBE. The point is that IBE are tiny because very small
coefficients multiply sizeable hadronic matrix elements. On the other hand, the direct approach to
LIBE requires in general the calculation of several contributions, see next section.

5. Separation of QCD from QED IBE

In the graphical notation of ref. [7] the kaon mass splitting is given by

MK+ �MK0 = �2Dmud∂t � (Dmcr
u �Dmcr

d )∂t

+ (e2
u � e2

d)e
2∂t

� �

+(eu � ed)e2 Â
f

e f ∂t . (5.1)

The contributions in the first line of the previous equation are the mass and critical mass counter-
terms. Whenever electromagnetic “self-energy” contributions are present, as in the second line of
eq. (5.1), the mass counter-terms are also present because these are needed to absorb the electro-
magnetic ultraviolet divergences.

Given the presence of the term proportional to Dmud = (md � mu)/2, the kaon mass splitting
can be used to determine the up-down mass difference and to define a prescription to separate
QCD from QED IBE. First note that since eu 6= ed there is a mixing in the renormalization of the
full theory between the parameters Dm̂ud and m̂ud ,

Dmud =
m̂d

2Zmd

� m̂u

2Zmu

= ZȳyDm̂ud +
m̂ud

Zud
. (5.2)

The renormalization constant Zȳy = 1/2Zmd +1/2Zmu has to be replaced with the renormalization
constant Z0

ȳy = 1/Zm of isosymmetric QCD while, to a first approximation, Zud can be safely

9

O(↵(mu �md))
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couplings of isosymmetric QCD. This is the strategy followed in refs. [13, 8, 14] and in previous
works on the subject. Although the matching is somehow “automatic” in this approach, the de-
tails of the renormalization prescriptions have to be specified when quoting results to allow their
comparison with other determinations and with experimental data.

In the following we shall talk about “leading isospin breaking effects” (LIBE). These are
defined by expanding eq. (3.3) in powers of8 gi �g0

i ,

DO =

(

e2 ∂
∂e2 +

⇥

g2
s � (g0

s )
2⇤ ∂

∂g2
s
+[m f �m0

f ]
∂

∂m f
+[mcr

f �mcr
0 ]

∂
∂mcr

f

)

O . (3.4)

Note that the counter-terms in the perturbative expansion with respect to âem, i.e. in the opera-
tor product expansion of eq. (3.1), do arise because the bare parameters (the renormalization con-
stants) of the two theories are different. Indeed, once expressed in terms of renormalized quantities,
eq. (3.4) becomes

DO =

8

<

:

ê2 ∂
∂ ê2 +

2

4ĝ2
s �
 

Zgs

Z0
gs

ĝ0
s

!2
3

5

∂
∂ ĝ2

s
+

"

m̂ f �
Zm f

Z0
m f

m̂0
f

#

∂
∂ m̂ f

+Dmcr
f

∂
∂mcr

f

9

=

;

O . (3.5)

The divergent quantities Zm f /Z0
m f

, Dmcr
f = mcr

f �mcr
0 and Zgs/Z0

gs
appearing in the previous equation

correspond to the counter-terms c f
m, c f

cr and cgs of eq. (3.1). The electric charge does not need to be
renormalized at this order,

ê2 = e2 = 4pâem =
4p
137

, (3.6)

The problem of the renormalization of the electric charge would have to be faced in the calcula-
tion of next-to-leading IBE. From the phenomenological point of view, given the size of the other
hadronic uncertainties, sub-leading IBE can be safely neglected by now. Note that whenever lattice
data are analyzed by neglecting terms of O[âem(m̂d � m̂u)] one is actually computing LIBE.

4. LIBE as a perturbation

In refs. [15, 7] it has been shown that LIBE can be calculated efficiently and accurately by
expanding the lattice QCD+QED path-integral of eq. (2.4) in powers of gi �g0

i

O(~g) =

⌦ �

1+ Ṙ+ · · ·
� �

O+ Ȯ+ · · ·
� ↵A,~g0

⌦

1+ Ṙ+ · · ·
↵A,~g0 = O(~g0)+DO . (4.1)

In these references it has been developed a “graphical notation” as a tool to make calculations.
The building blocks of the graphical notation are the corrections to the quark propagator (at fixed
QCD gauge background) shown in Figure 2. A dictionary to translate in local operator language

8Note the absence in eq. (3.4) of terms linear in e and gs (physical observables are QED and QCD gauge invariant)
and the presence of a term proportional to the shift of the critical masses mcr

f � mcr
0 that is needed in theories in which

chirality is broken.
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Pseudo-scalar vs. vector

• We know that what works in pseudo-scalar channel 
➡ might not necessarily work that well in the vector one 

• Example on two ensembles with Nf=2 O(a) improved Wilson fermions (           configurations)

• Lattice spacing                        , pion masses:  
➡ D4:                 ,   
➡ E5:                  ,     
➡ D5:                 , 

a ⇡ 0.07fm
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LIBE of the HVP in the electro-quenched approx.

• Expanding the connected part of the HVP 

• Electro-quenched approximation:

0.1 Definitions

We follow the notation from the paprer [1] and derive an expression for the leading isospin breaking correction,
assuming we will work with the twisted mass Wilson fermions at a maximal twist. A simplification to the
case of O(a) improved Wilson fermions is straight forward (terms multiplying (mf �m

0
f ) and (mcr

f �m

cr,0
f )

coincide).

We are looking at the connected part of the hadronic vacuum polarisation:

= Tr{�µSf�⌫Sf} (1)

Some useful identities for the computation of the leading isospin breaking corrections to the HVP:

•
@Sf

@e = �Sf
@Df

@e Sf (2)

•
@Sf

@mf
= �Sf

@Df

@mf
Sf (3)

•
@Sf

@mcr
f

= �Sf
@Df

@mcr
f
Sf (4)

•
@rf
@e = Tr(Sf

@Df

@e ) (5)

•

1
2
@2Sf

@e2 = Sf
@Df

@e Sf
@Df

@e Sf � 1
2Sf

@2Df

@e2 Sf (6)

•

1
2
@2rf
@e2 = 1

2Tr(Sf
@2Df

@e2 ) + 1
2Tr(Sf

@Df

@e )Tr(Sf
@Df

@e )� 1
2Tr(Sf

@Df

@e Sf
@Df

@e ) (7)

•

@2R
@g2

s
= 6

g4
s
Sgauge (8)

0.2 Leading isospin breaking e↵ects - diagram by diagram (Nazario’s

technique)

Explicit expansion:
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( e2q ) = ( e2q )

0
(9)

+ e4qe
2

+ e2q(mf �m0
fs)

X

� e4qe
2 � e4qe

2

For a start, it would be nice to compute at least electro-quenched contribution, namely setting (see ref. [1]):

rf = 1, and (10)

gs = g

0
s . (11)

In this case, only diagrams in Figure 1 contribute.

0.3 Mass preconditioned, diagram by diagram

0.4 Going beyond the electro-quenched approximation: including

the disconnected contribution

If proven to be sucessfull, we could use the tecnique presented in the note MP disconn.pdf to compute the
disconnected contribution entering as an order ↵ correction together with the electro-quenched contributions
from Figure 1.
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A first look at the signal/noise

• Strange HVP and EM corrections (exploratory study, same bare parameters)  

• Their sum makes sense only after the renormalisation: 

➡ intermediate renormalisation perscription and matching procedure  
➡ using experimental determinations of the charged mesons to fix quark masses and 

the lattice spacing in the isosymmetric theory

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Π
(q

2
)

(aq)2

HVP
tadpole
selfen.

 0

 0  0.2  0.4  0.6  0.8  1  1.2

Π
(q

2
)

(aq)2

 

tadpole
selfen.



Outline I: technical improvements

• Performing this first test on a moderate size cluster was possible partially due to the deflated solver 

from DD-HMC code [M. Lüscher '07]   

• Nevertheless,  upgrading the code to use the new openQCD solver: speedup needed for 
accumulating the statistics for the light contribution 

• This study is performed with point source  

➡ indications that replacing the point with some extended source might be advantageous 

➡ 1src, 4src, 24src on 83, 64, 41 configurations,            as prpopsed in [1208.5914] ⇧(0)
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• Reducing finite volume effects - they are expected to be strong 

• Currently: global zero mode subtracted:   

➡ Violates reflection positivity and does not have a well defined                   limit [1406.4088] 

• Removing the zero mode of the field on each time slice separately [Hayakawa, Uno ‘08] 

➡ this explicitly violates the hypercubic symmetry of the lattice -> no trace of the violation in 

the inf. vol limit  [1406.4088] 

• Charged particles in QED/QED+QCD with C* BCs —> FV effects even smaller  

➡ [talks by A. Patella and N. Tantalo: Thurs.,11.20, 11.40, s.402] 

• This would be the way to go here as well, although the FV corrections for this quantity have not 

yet been explicitly computed in any of the above mentioned setups  

• Getting the disconnected contributions (beyond el-quenched)

Outline II: conceptual improvements

It is important to have a solid analytical handle on QED finite-volume (FV) corrections, because they are
expected to be large due to the long-range nature of the electromagnetic interaction. Unlike QCD, QED has no
gap and the photon remains massless even in the presence of interactions. While the gap in QCD guarantees
that FV corrections fall off exponentially in LM

⇡

for sufficiently large LM
⇡

[S18], in the presence of QED,
quantities are much more sensitive to the volume and topology of spacetime. It is the main characteristics of
this sensitivity which concerns us in this section. We use the computed analytical expressions in two important
ways. The first is to decide on the finite-volume formulation of QED to use in our numerical work. The second
is to test our implementation of QED and the corresponding codes.

The work presented in this paper is concerned with spin-1/2 baryons and spin-0 pseudoscalar mesons. Thus
we compute the FV corrections in spinor and scalar QED. Our photon field has periodic boundary conditions,
while the quark fields are periodic in space and antiperiodic in time. Therefore, baryon fields are antiperiodic
in time and periodic in space, while meson fields are periodic in all directions. As a result, the topology of
our spacetime is the four-torus, T4, up to a twist for baryons in the time direction. Note that for corrections in
inverse powers of the torus size, only the photon boundary conditions are relevant.

As discussed in Sec. 2.1, we consider two different versions of FV QED:

• the first where only the four-momentum zero-mode of the photon field is eliminated, i.e. A
µ

(k = 0) ⌘ 0,
which we denote QED

TL

;

• the second where all three-momentum zero-modes of the photon field are eliminated, i.e. A
µ

(k0,~k =

~
0) ⌘ 0 for all k0, which we denote QED

L

.

Power-like FV corrections arise from the exchange of a photon around the torus. They are obtained by
comparing results obtained in FV with those of our target theory, QED in infinite volume (IV), that is in R4.
Here we are interested in the FV corrections to a charged particle’s pole mass. This is the physical mass of the
particle, as obtained by studying the Euclidean time-dependence of a relevant, zero three-momentum, two-point
correlation function. This mass is gauge invariant and we use this freedom to work in the simpler Feynman
gauge.

The FV corrections to the mass m of a point particle of spin J and of charge q in units of e, on a torus of
dimensions T ⇥L3, is given by the difference of the FV self energy, ⌃

J

(p, T, L), and its IV counterpart, ⌃
J

(p),
on shell:

�mnJ
J

(T, L) ⌘ mnJ
J

(T, L)�mnJ
= (qe)2�⌃

J

(p = im, T, L)

⌘ (qe)2 [⌃
J

(p = im, T, L)� ⌃

J

(p = im)] , (7)

where n
J

= 1 (resp. n
J

= 2) for spin J = 1/2 fermions (resp. spin J = 0 bosons) and p = im is a shorthand
for p = (im,~0) (with /p ! im for spin-1/2 fermions). Here and below, quantities without the arguments L and
T are infinite spacetime-volume quantities.

Because we only work in a regime where electromagnetic effects are linear in the fine structure constant ↵,
we evaluate the self-energy difference in Eq. (7) at one loop. At this order, we generically write differences of
self energies or of contributions to self energies as

�⌃(p, T, L) =

2

4

0
X

Z

k

�
Z

d4k

(2⇡)4

3

5 �(k, p) , (8)

where k is the momentum of the photon in the loop and �(k, p) is the appropriate, IV self-energy integrand, a
number of which are defined below. The individual FV and IV terms in Eq. (8) are generally UV and possibly
IR divergent. Thus, individually they should be regularized, e.g. with dimensional regularization. However,
on shell the IV integral is IR finite and in finite volume, the sums are IR finite because the FV formulations of

18

T ! 1



Conclusions

• Phenomenologically - IB plays an important role in the th.-exp. discrepancy 

• Although the aimed precision of the HVP determinations from the lattice is not 

yet there to see this effect  
➡ useful to think ahead and work towards this estimate 
➡ all ingredients are there 

• This is a first attempt to extract the IB correction to the HVP from first principles 

• Difficult task, but R123 method should give better signal over simulating full 

theory (larger contributions are being computed) 
➡ QCD+QEDq certainly worth trying  

• Even after (and if) getting the signal in the light sector —> many things to 

understand before a definite answer is known  
➡ 1. Finite volume effects 

• Stay tuned …
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BACKUP I: Different strategy than Pi(0) 

• But same machinery needs to be implemented [de Divitis, Petronzio, Tantalo1208.5914]: 

• Consequently: tricks learned in one computation can be used in another and vice versa

Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]

⇧12(Q) =
P

xhTr{S [y , x ; U]�1
V (x ,~q)S [x , y ; U, �p]�2

V (y ,~0)}i.

⇧(0) = �@⇧12(Q)
@Q1@Q2

|Qs=0

= � 1
(TL3)2

P
x,y hTr

⇥
S�1

V
@2S

@Q1@Q2
�2
V

⇤
� i

2Tr
⇥
S�1

T
@S
@Q2

�2
V

⇤

� i
2Tr

⇥
S�1

V
@S
@Q1

�2
T

⇤
� 1

4Tr
⇥
S�1

TS�2
T

⇤
i
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anyway, on limited statistics, that the gauge Ward iden-
tities

P
µ p̂µĈµ� =

P
� p̂�Ĉµ�(p) = 0 are satisfied.

First, fixed µ = 1 and ⌫ = 2, we have computed the
integrated correlation at p1 > 0 and p2 > 0 and divided
it by the momenta,

�(p2 > 0) = � Ĉ12(p)

p̂1p̂2
=

1

(TL3)2

�

x,y

h

Tr
�
S[y, x; U ]�1

V (x, ~p/2)S[x, y; U, �p]�2
V (y, ~p/2)

�
i.

(47)

Then we have applied the rules discussed in the previous
sections to define the second mixed derivative, acting on
propagators and vertices and evaluated at zero momen-
tum, according to

�(0) = � �2Ĉ12(p)

�p1�p2

�����
p2=0

=
1

(TL3)2

�

x,y

h

Tr

�
S�1

V
�2S

�p1�p2
�2

V

�
� 1

4
Tr

⇥
S�1

T S�2
T

⇤

� i

2
Tr

�
S�1

T
�S

�p2
�2

V

�
� i

2
Tr

�
S�1

V
�S

�p1
�2

T

�
i ,

(48)

where, for sake of brevity, we have dropped position ar-
guments and we have used the relations

��k
V (x, ~p/2)

�pk
= � i

2
�k

T (x, ~p/2) ,

��k
T (x, ~p/2)

�pk
= � i

2
�k

V (x, ~p/2) , (49)

to obtain the derivative of the vertices (see section IV
above). Note that in the previous expressions the factor
1/2 appears because the currents here depend upon ~p/2
and not upon ~p.

To the lattice definition of �(0), eq. (48), it can be
given the following graphical representation (see also
eq. (18))
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In FIG. 4 we show our results. The black points corre-
spond to �(p2) obtained from eq. (47) and, as expected,
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FIG. 4: Black points correspond to the calculation of
�(p2) performed by using standard techniques (according to
eq. (47)) on two lattice volumes, 243 ⇥ 48 for the D2 ensem-
ble and 323 ⇥ 64 for the E2 ensemble. The red points corre-
spond to �(0) calculated directly on the lattice (according to
eq. (48)) for the two volumes. Data are in lattice units.

tend to be noisy for small values of p2. The red points
correspond to �(0) calculated directly on the lattice ac-
cording to eq. (48). The data, obtained with limited
statistics (150 gauge configurations for the D2 ensemble
and 138 gauge configurations for the E2 ensemble), cor-
respond to two di�erent lattice volumes (VD2 = 243 ⇥ 48
and VE2 = 323 ⇥ 64) and di�er at small momenta for
finite volume e�ects.

For each data set, the error on �(0) is comparable
to the error that can be obtained at (ap)2 � 0.05 but,
coming from a direct calculation, it does not need to be
corrected for systematic errors due to extrapolations and,
important to note, it scales with the statistics. Further-
more, the error on �(0) scales favorably with the lattice
volume.

VI. CONCLUSIONS

The method discussed in this letter allows the direct
calculation on the lattice of the derivatives of correlators
with respect to external momenta. We have described
the method and checked its validity for several correlation
functions.

In particular, we have derived expressions to be used
in order to compute both form factors parametrizing
semileptonic decays of pseudoscalar mesons into other
pseudoscalar mesons, directly at zero recoil. These rela-
tions, checked numerically in this paper, may have many
important phenomenological applications, for example in
the calculation of B � D�⌫ di�erential decay rate with-
out excluding the � = ⌧ case, etc. Similar relations can
be easily derived along the lines discussed in this paper
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eq. (48)) for the two volumes. Data are in lattice units.

tend to be noisy for small values of p2. The red points
correspond to �(0) calculated directly on the lattice ac-
cording to eq. (48). The data, obtained with limited
statistics (150 gauge configurations for the D2 ensemble
and 138 gauge configurations for the E2 ensemble), cor-
respond to two di�erent lattice volumes (VD2 = 243 ⇥ 48
and VE2 = 323 ⇥ 64) and di�er at small momenta for
finite volume e�ects.

For each data set, the error on �(0) is comparable
to the error that can be obtained at (ap)2 � 0.05 but,
coming from a direct calculation, it does not need to be
corrected for systematic errors due to extrapolations and,
important to note, it scales with the statistics. Further-
more, the error on �(0) scales favorably with the lattice
volume.

VI. CONCLUSIONS

The method discussed in this letter allows the direct
calculation on the lattice of the derivatives of correlators
with respect to external momenta. We have described
the method and checked its validity for several correlation
functions.

In particular, we have derived expressions to be used
in order to compute both form factors parametrizing
semileptonic decays of pseudoscalar mesons into other
pseudoscalar mesons, directly at zero recoil. These rela-
tions, checked numerically in this paper, may have many
important phenomenological applications, for example in
the calculation of B � D�⌫ di�erential decay rate with-
out excluding the � = ⌧ case, etc. Similar relations can
be easily derived along the lines discussed in this paper
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BACKUP II: Tuning the critical mass 

• Using WTI : 

➡ Dashen theorem: $\hat{m_f}={\hat{m_u},\hat{m_d},\hat{m_s}}=0$ 
➡ Also with EM, in the massless theory:  

- $M_{\Pi^0}=M_{K^0}=0$ 
- $M_{\Pi^+}=M_{K^+}=0$ 
- $\kappa^{crit}_s = \kappa^{crit}_d$ 

• Need to be done with high accuracy, in order to cancel linear ultraviolet divergencies

Our pions are heavier than the physical ones and our lattice data need to be extrapolated toward
the chiral limit. Furthermore, QED is a long range interaction and we have to cope with the associated
power–law finite volume e↵ects. The chiral extrapolation and the removal of lattice artifacts from simulated
numerical data is the subject of section 9.

7 Tuning critical masses

In order to extract physical informations from the expression for MK+ � MK0 , see eq. (69) above, we
first need to obtain a numerical determination of the electromagnetic shift of the critical masses of the
light quarks. Our results for the kaon mass splitting have been obtained within the electro–quenched
approximation that, consistently, we employ in this section to calculate �mcr

u,d.

As discussed in section 4.1, we can use two di↵erent conditions to obtain a numerical estimate of the
divergent parameters �mcr

u,d. The first strategy, based on Dashen’s theorem, consists in imposing the
validity of the continuum SU(3) chiral limit relations

lim
m̂f 7!0

M⇡0 = lim
m̂f 7!0

MK0 = 0 , (73)

where m̂f = {m̂u, m̂d, m̂s}. Relying on the determination of the QCD critical mass mcr
0 performed in

ref. [14] and using eqs. (65) and (68), we have that in the electro–quenched approximation the neutral pion
and neutral kaon masses vanish for �mcr

f given by

�mcr
f = �e2f

2
e2 lim

m̂f 7!0

@t + 2@t

+

@t

, (74)

where f = {u, d, s}. From the numerical point of view, the parameters �mcr
f have to be determined as

accurately as possible because they are needed in order to cancel a linear ultraviolet divergence present
in eq. (69). The numerical problem with eq. (74) is that the associated determination of �mcr

f requires a
chiral extrapolation and this in turn introduces larger uncertainties compared to the alternative method
discussed in section 4.1, namely the numerical determination of the electromagnetic critical masses based
on the use of the WTI of eq. (41).

By applying the methods of section 5 to the Ward–Takahashi identity Wf (~g) = 0, i.e. by applying the
di↵erential operator � to the full theory parity–odd correlator (l.h.s. of eq. (41))

Wf (~g) = �r0

+

�
= �r0 Tr

n

�0 S+
f [U, A;~g; t, ~p = 0] �5 S�

f [U, A;~g;�t, ~p = 0]
o

= 0 , (75)
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BACKUP III: Subtracting the zero mode

• Illustration of the reduced finite-volume effects, once zero mode of the photon field 
subtracted time-slice by time-slice (L) instead of the global zero mode subtraction (TL) 

• Note that translation invariance is violated here, but it is recovered in the continuum 

limit  [BMW,1406.4088]
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Figure S5: Quark effective masses in QED using different zero-mode subtractions. The four-dimensional
zero-mode subtraction (QED

TL

) produces masses that depend on T . The time-slice by time-slice removal
(QED

L

) makes effective masses well behaved.
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