Leading isospin breaking correction to the HVP

Marina Krstić Marinković

Lattice 2015, July 14 - 18, Kobe, Japan

Motivation I: computing IB correction to the HVP

- Discrepancy between $a_{\mu}^{exp} a_{\mu}^{th,SM}$ mainly coming from hadronic contributions
- Once the aimed precision (<1%) for the connected HVP from the lattice is achieved (in the isosymmetric theory) —> the effects we neglected so far might become important:
 - disconnected contribution,
 - isospin breaking corrections,
 - charm in the sea, ...
- In the phenomenological determination of a_{μ}^{had} , model calculation of [Jegerlehner,Szafron '11]
 - $\label{eq:correctly}$ correctly applied IB correction reduced the discrepancy between e^+e^- and τ data
- Not clear how this translates to the Euclidean
- It would be good to have a model independent estimate of IB effects: lattice QCD+QED
- Note: systematic analysis based on the τ data may also benefit knowing how big/small this effect is

Motivation II: the method to compute IBE

- All necessary ingredients are, in principle, there
- R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE)
 - Expanding an observable (in the isospin broken theory) with respect to the isosymmetric QCD result
- For a start: applying it to the connected part of the HVP
- Main advantage w. respect to simulating QED+QCD:
 - → Diagrams obtained individually (before multiplying with $O(\alpha_{em})$, $O(m_u m_d)$ coeff.)
 - ➡ No extrapolation in α_{em}

The method I: LIBE in practice (R123)

• Reusing the gauge configurations generated in the isosymmetric theory

Reweighting:

$$\langle O \rangle^{\vec{g}} = \frac{\langle R[U,A;\vec{g},\vec{g}^0] \ O[U,A;\vec{g}] \rangle^{A,\vec{g}^0}}{\langle R[U,A;\vec{g},\vec{g}^0] \rangle^{A,\vec{g}^0}}$$

- \vec{g}^0 bare param. of isosymm. th \vec{g} bare param. of the full th
- For simplicity, approximate sea quarks as electrically neutral:
- $R[U, A; \vec{g}, \vec{g}^0] = 1$
- ...once an appropriate renormalisation procedure is applied: $\Delta O = O(\vec{g}) O(\vec{g}^0)$
- Example: $\Delta \longrightarrow \pm =$

The method II: LIBE in practice (R123)

- Previous results by Rome123 collaboration [arXiv:1303.4896, arXiv:1311.2797]
- Leading correction to different hadronic observables: pion/kaon mass splitting, Dashen theorem breaking parameter, u-d quark mass difference ...
- Corrections function of the ratios of the correlators in the full and isosymmetric theory and give good numerical signal

• Leading correction: expanding in powers of the difference between bare param. in full and isosymm. th:

$$\Delta O = \left\{ e^2 \frac{\partial}{\partial e^2} + \left[g_s^2 - (g_s^0)^2 \right] \frac{\partial}{\partial g_s^2} + \left[m_f - m_f^0 \right] \frac{\partial}{\partial m_f} + \left[m_f^{cr} - m_0^{cr} \right] \frac{\partial}{\partial m_f^{cr}} \right\} O$$

- Leading IB corrections are computed: also in QED+QCD simulations $O(\alpha(m_u m_d))$ are neglected
- Main general obstacle in implementing this method
 - many diagrams need to be computed
 - including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched approximaton)
- Implementation: requires careful organisation of the computation of the diagrams:

$$M_{K^{+}} - M_{K^{0}} = -2\Delta m_{ud}\partial_{t} \frac{\swarrow}{\bigcirc} - (\Delta m_{u}^{cr} - \Delta m_{d}^{cr})\partial_{t} \frac{\checkmark}{\bigcirc} + (e_{u}^{2} - e_{d}^{2})e^{2}\partial_{t} \frac{\swarrow}{\bigcirc} - \underbrace{\bigcirc}_{\xi_{v,v}} - \underbrace{\bigcirc}_{\xi_{v,v}} + (e_{u} - e_{d})e^{2}\sum_{f}e_{f}\partial_{t} \frac{\xi_{v,v}}{\bigcirc} + (e_{u} - e_{d})e^{2}\sum_{f}e^{2}\sum_{f}e^{2}\sum_{f}e^{2}\sum$$

Pseudo-scalar vs. vector

- We know that what works in pseudo-scalar channel
 - might not necessarily work that well in the vector one
- Example on two ensembles with Nf=2 O(a) improved Wilson fermions (<u>CLS</u> configurations)

- Lattice spacing $a \approx 0.07 fm$, pion masses:
 - → D4: 48×24^3 , $m_\pi \approx 480 {
 m MeV}$
 - → E5: 64×32^3 , $m_\pi \approx 410 \mathrm{MeV}$
 - \rightarrow D5: 48 \times 24³, $m_{\pi} \approx 420 \mathrm{MeV}$

A first look at the signal/noise

- Strange HVP and EM corrections (exploratory study, same bare parameters)
- Their sum makes sense only after the renormalisation:
 - intermediate renormalisation perscription and matching procedure
 - using experimental determinations of the charged mesons to fix quark masses and the lattice spacing in the isosymmetric theory

Outline I: technical improvements

- Performing this first test on a moderate size cluster was possible partially due to the deflated solver from DD-HMC code [M. Lüscher '07]
- Nevertheless, upgrading the code to use the new openQCD solver: speedup needed for accumulating the statistics for the light contribution
- This study is performed with point source
 - ➡ indications that replacing the point with some extended source might be advantageous

Outline II: conceptual improvements

- Reducing finite volume effects they are expected to be strong
- Currently: global zero mode subtracted: $A_{\mu}(k=0) \equiv 0$
 - \blacktriangleright Violates reflection positivity and does not have a well defined $T \rightarrow \infty$ limit [1406.4088]
- Removing the zero mode of the field on each time slice separately [Hayakawa, Uno '08]
 - this explicitly violates the hypercubic symmetry of the lattice -> no trace of the violation in the inf. vol limit [1406.4088]
- Charged particles in QED/QED+QCD with C* BCs —> FV effects even smaller
 - [talks by A. Patella and N. Tantalo: Thurs., 11.20, 11.40, s.402]
- This would be the way to go here as well, although the FV corrections for this quantity have not yet been explicitly computed in any of the above mentioned setups
- Getting the disconnected contributions (beyond el-quenched)

Conclusions

- Phenomenologically IB plays an important role in the th.-exp. discrepancy
- Although the aimed precision of the HVP determinations from the lattice is not yet there to see this effect
 - useful to think ahead and work towards this estimate
 - ➡ all ingredients are there
- This is a first attempt to extract the IB correction to the HVP from first principles
- Difficult task, but R123 method should give better signal over simulating full theory (larger contributions are being computed)
 - QCD+QEDq certainly worth trying
- Even after (and if) getting the signal in the light sector —> many things to understand before a definite answer is known
 - 1. Finite volume effects
- Stay tuned ...

Thanks!

- Nazario for the (great!) code basis, discussions and motivation to look at the IB effects in this way
- lattice@CERN for managing and providing the computer cluster, <u>CLS</u> for the gauge configurations
- Fred Jegerlehner and RBC-UKQCD colleagues (esp. HVP working group) for various discussions on HVP and isospin breaking related issues

The RBC & UKQCD collaborations

<u>BNL and RBRC</u>	Luchang Jin Bob Mawhinney	<u>Plymouth University</u>
Tomomi Ishikawa	Greg McGlynn	Nicolas Garron
Taku Izubuchi	David Murphy	
Chulwoo Jung	Daiqian Zhang	
Christoph Lehner		<u>University of Southampton</u>
Meifeng Lin	<u>University of Connecticut</u>	
Taichi Kawanai		Jonathan Flynn
Christopher Kelly	Tom Blum	Tadeusz Janowski
Shigemi Ohta (KEK)		Andreas Juettner
Amarjit Soni	<u>Edinburgh University</u>	Andrew Lawson
Sergey Syritsyn		Edwin Lizarazo
OF DAL	Peter Boyle	Antonin Portelli
<u>CERN</u>	Luigi Del Debbio	Chris Sachrajda
	Julien Frison	Francesco Sanfilippo
Marina Marinkovic	Richard Kenway	Matthew Spraggs
	Ava Khamseh	Tobias Tsang
<u>Columbia University</u>	Brian Pendleton	
	Oliver Witzel	<u>York University (Toronto)</u>
Ziyuan Bai	Azusa Yamaguchi	<u>10/R Oniversity (10/0/10)</u>
Norman Christ		Renwick Hudspith
Xu Feng		Renwick Hudspith

BACKUP I: Different strategy than Pi(0)

- But same machinery needs to be implemented [de Divitis, Petronzio, Tantalo1208.5914]:
- $\Pi_{12}(Q) = \sum_{x} \langle Tr\{S[y,x;U]\Gamma^1_V(x,\vec{q})S[x,y;U,\lambda^p]\Gamma^2_V(y,\vec{0})\}\rangle.$

BACKUP II: Tuning the critical mass

- Using WTI :
 - → Dashen theorem: $\lambda_{m_f}=\lambda_{m_u},\lambda_{m_d},\lambda_{m_s}=0$
 - ➡ Also with EM, in the massless theory:
 - $M_{V^0}=M_{K^0}=0$
 - $M_{V^+}=M_{K^+}=0$
 - \$\kappa^{crit}_s = \kappa^{crit}_d\$
- Need to be done with high accuracy, in order to cancel linear ultraviolet divergencies

BACKUP III: Subtracting the zero mode

- Illustration of the reduced finite-volume effects, once zero mode of the photon field subtracted time-slice by time-slice (L) instead of the global zero mode subtraction (TL)
- Note that translation invariance is violated here, but it is recovered in the continuum limit [BMW,1406.4088]

