The curvature of the crossover line in the (T, μ) -phase diagram of QCD

R. Bellwied⁶, S. Borsanyi¹, J. Günther¹, Z. Fodor^{1,2,3}, S. D. Katz^{2,4}, C. Ratti^{5,6}

¹ Department of Physics, Wuppertal University, ² Inst. for Theoretical Physics, Eötvös University, ³ Jülich Supercomputing Centre, ⁴ MTA-ELTE "Lendület" Lattice Gauge Theory Research Group, ⁵ Dip. di Fisica, Universita di Trino and INFN, ⁶ Department of Physics, University of Houson

July 14th 2015

The (T, μ) -phase diagram of QCD

Aim: Determining T_c at finite μ_B . A parametrization which respects symmetry under charge conjugation at $\mu_B = 0$:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \mathcal{O}(\mu_B^4)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Determining κ on the lattice

There are two main methods to determine the curvature κ from the lattice:

- taylor expansion form simulations at $\mu_B = 0$ ([1], [2])
- analytic continuation from simulation at imaginary μ_B ([3], [4])

The simulations are for $N_t = 10$ or coarser which might not be enough for a controlled continuum extrapolation. Also for a reliable error estimate an analysis of systematic influences is necessary.

[1] G. Endrödi et al (2011, arXiv:1102.1356), [2] O. Kaczmarek et al (2011, arXiv:1011.3130), [3] C. Bonati et al (2014, arXiv:1410.5758), [4] P. Cea (2014, arXiv:1403.0821)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Simulation details

- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- ▶ 2+1+1 flavour, on LCP with pion and kaon mass
- Simulation at $\langle n_S \rangle = 0$ (as for heavy ion collisions, until now there are simulations with $\mu_s = 0$ or $\mu_S = 0$ where $\mu_S = \frac{1}{3}\mu_B \mu_s$)

э

- \blacktriangleright Lattice sizes: 32 $^3 \times$ 8, 40 $^3 \times$ 10, 48 $^3 \times$ 12 and 64 $^3 \times$ 16
- $\frac{\mu_B}{T} = 0$, 1.18i, 1.57i and 1.96i
- ► Two methods of scale setting: f_{π} and w_0 , $Lm_{\pi} > 4$

Tuning to $\langle n_S \rangle = 0$

Aim: For a given μ_B determine μ_S so that $\langle n_S \rangle = 0$. This means solving the differential equation

$$\langle n_S \rangle = 0 \Leftrightarrow \frac{\partial \log Z}{\partial \mu_S} = 0$$

Notation:

$$\chi_{udsc} = -\frac{1}{T^4} \frac{\partial^4}{\partial (\mu_u/T) \partial (\mu_d/T) \partial (\mu_s/T) \partial (\mu_c/T)} \frac{T}{V} \log Z$$

Assuming we know the value for $\mu_S(\mu_B)$ so that $\langle n_s \rangle = 0$ for $\mu_S(\mu_B^0)$ and $\mu_S(\mu_B^0 - \Delta \mu_B)$ with all the derivatives. Then (Runge-Kutta):

$$\mu_{\mathcal{S}}(\mu_{\mathcal{B}}^{0}+\Delta\mu_{\mathcal{B}})=\mu_{\mathcal{S}}(\mu_{\mathcal{B}}^{0}-\Delta\mu_{\mathcal{B}})+2\Delta\mu_{\mathcal{B}}\frac{\mathrm{d}\mu_{\mathcal{S}}}{\mathrm{d}\mu_{\mathcal{B}}}(\mu_{\mathcal{B}}^{0}).$$

In the simulations with μ_B^0 and $\mu_B^0 - \Delta \mu_B$, μ_S might not precisely tuned. There we want to extrapolate to a better value. We assume that correct value of μ_S is $\tilde{\mu}_S = \mu'_S + \Delta \mu'_S$. Then:

$$\langle n_S \rangle = \frac{\partial \log Z}{\partial \tilde{\mu}_S} = \frac{\partial \log Z}{\partial \mu'_S} + \frac{\partial^2 \log Z}{\partial \mu'_S} \Delta \mu'_S = 0$$

Tuning to $\langle n_S \rangle = 0$

This yields

$$\Delta \mu_{S}' = -\frac{\chi_{S}}{\chi_{SS}}$$

Similar for the derivative we get:

$$\frac{\mathrm{d}\tilde{\mu_{S}}}{\mathrm{d}\mu_{B}} = -\frac{\tilde{\chi}_{SB}}{\tilde{Z}_{SS}}|_{\langle n_{S}\rangle=0} = -\frac{\chi_{SB}}{\chi_{SS}} - \frac{\chi_{SSB}\chi_{SS} - \chi_{SSS}\chi_{SB}}{(\chi_{SS})^{2}}\Delta\mu_{S}' + \mathcal{O}(\Delta\mu_{S}'^{2})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Observables

Chiral susceptibility:

$$\begin{split} \chi_{\bar{\psi}\psi} &= \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \left(m_q\right)^2} \\ \chi_{\bar{\psi}\psi}^{r} &= \left(\chi_{\bar{\psi}\psi}(T,\beta) - \chi_{\bar{\psi}\psi}(0,\beta)\right) \frac{m_l^2}{m_{\pi}^4} \end{split}$$

Chiral condensate:

$$\begin{split} \langle \bar{\psi}\psi \rangle &= \frac{T}{V} \frac{\partial \ln Z}{\partial m_q} \\ \langle \bar{\psi}\psi \rangle^r &= -\left(\langle \bar{\psi}\psi \rangle (T,\beta) - \langle \bar{\psi}\psi \rangle (0,\beta)\right) \frac{m_l}{m_\pi^4} \end{split}$$

Strangeness susceptibility:

$$\chi_{SS} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \left(\mu_S\right)^2}$$

S. Borsányi et al (2010, arXiv:1005.3508)

イロト 不得 トイヨト イヨト

3

$\chi_{\bar{\psi}\psi}$

Fit function: $\chi_{\bar{\psi}\psi}^{r}(T) = \begin{cases} C + A^{2}(\mu) \left(1 + W^{2}(\mu)(T - T_{c}(\mu))^{2}\right)^{\alpha/2} & \text{for } T \leq T_{c} \\ C + A^{2}(\mu) \left(1 + b^{2}W^{2}(\mu)(T - T_{c}(\mu))^{2}\right)^{\alpha/2} & \text{for } T > T_{c} \end{cases}$ $(\text{ or } \chi_{\bar{\psi}\psi}^{r}(T) = C + \frac{A(\mu)}{1 + W^{2}(\mu)(T - T_{c}(\mu))^{2} + 2sW^{3}(\mu)(T - T_{c}(\mu))^{3}})$

Zero temperature fit function: $\chi_{\bar{\psi}\psi}(0,\beta) = \sum_{k=0}^{6} A_k \beta^k \text{ (or } \chi_{\bar{\psi}\psi}(0,\beta) = \sum_{k=-2}^{2} A_k \beta^k \text{)}_{\text{ is a started}}$

Fit function: $\langle \bar{\psi}\psi \rangle^r(\mu, T) = A(\mu) (1 + B \tanh [C (T - T_c(\mu))] + D (T - T_c(\mu)))$ (or $\bar{\psi}\psi^r(\mu, T) = A(\mu) (1 + B \arctan [C (T - T_c(\mu))] + D (T - T_c(\mu))))$

Zero temperature fit function: $\chi_{\bar{\psi}\psi}(0,\beta) = \sum_{k=0}^{K} A_k \beta^k$ with $K \in \{6,7\}$

・ロト・日本・日本・日本・日本・日本・日本

Fit function: $\chi_{SS}(\mu, T) = A(\mu) (1 + B \tanh [C (T - T_c(\mu))] + D (T - T_c(\mu)))$ (or $\chi_{SS}(\mu, T) = A(\mu) (1 + B \arctan [C (T - T_c(\mu))] + D (T - T_c(\mu))))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Curvature

Curvature function: $\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \mathcal{O}(\mu_B^4)$ For error analysis we also fit:

$$C_1(x) = 1 + ax + bx^2$$

$$C_2(x) = \frac{1 + ax}{1 + bx}$$

$$C_3(x) = \frac{1}{1 + ax + bx^2}$$

900

æ

Continuum extrapolation:

 $\kappa = \kappa^{c} + A \left(\frac{1}{N_{t}}\right)^{2}$ Combined curvature fit and continuum extrapolation with:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 \frac{1}{N_t^2}\right) \left(\frac{\mu_B}{T_c}\right)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Continuum extrapolation: $\kappa = \kappa^{c} + A \left(\frac{1}{N_{t}}\right)^{2}$ Combined curvature fit and continuum extrapolation with: $\frac{T_{c}(\mu_{B})}{T_{c}(0)} = 1 - \left(\kappa^{c} + c_{1}\frac{1}{N_{t}^{2}}\right) \left(\frac{\mu_{B}}{T_{c}}\right)^{2}$ Extrap. with Nt = 8, 10, 12

(日) (四) (日) (日) (日)

Continuum extrapolation: $\kappa = \kappa^{c} + A \left(\frac{1}{N_{t}}\right)^{2}$ Combined curvature fit and continuum extrapolation with: $T_{c}(\mu_{B}) = 1 - \left(\mu_{C} + a^{-1}\right) \left(\mu_{B}\right)^{2}$

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 \frac{1}{N_t^2}\right) \left(\frac{\mu_B}{T_c}\right)^{\frac{1}{2}}$$

Extrap. with Nt = 8, 10, 12, 16

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Continuum extrapolation: $\kappa = \kappa^{c} + A \left(\frac{1}{N_{t}}\right)^{2}$ Combined curvature fit and continuum extrapolation with: $T_{c}(\mu_{B}) = 1 - \left(\mu_{C} + a^{-1}\right) \left(\mu_{B}\right)^{2}$

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 \frac{1}{N_t^2}\right) \left(\frac{\mu_B}{T_c}\right)$$

Extrap. with Nt = 8, 10, 12, 16

Extrap. with Nt = 8, 10, 12

Extrap. with Nt = 10, 12, 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Comparison for different observables

$$\chi^{E}_{SS}$$
: $\langle n_{S} \rangle = 0$ and
 $0.5 \langle B \rangle = \langle Q \rangle$

$$\chi_{SS}$$
: $\langle n_S \rangle = 0$ and
 $0.4 \langle B \rangle = \langle Q \rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comparison of Taylor expansion and analytic continuation

Comparison for results at $N_t = 10$, since here the precision is higher than in the continuum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Result

Combined result from χ_{SS} , $\bar{\psi}\psi$ and $\chi_{\bar{\psi}\psi}$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Comparison of results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

T_c extrapolation

Determining $T_c(\mu_B)$ by solving the equation $\frac{T_c(\mu_B)}{T_c(0)} = C_i \left(-\frac{\mu_B^2}{T_c^2(\mu)}\right)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ふして 山田 ふぼやえばや 山下

Analysis of systematic error sources

Sources for systematic error:

- There is a strong dependence on the crossover temperature
- Continuum extrapolation only from three relatively coarse lattices

◆日 > < 同 > < 国 > < 国 >

э

Systematics of fit functions

Analysis was done at $\mu_s = 0$ not $\langle n_S \rangle = 0$.