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Semi-leptonic decays of octet baryons (p, n, Λ, Σ, Ξ)

Hyperon β-decay

B1 → B2 + l + ν̄l

Δs=1 decay

Σ−(sdd) n(udd)

W− e−
νe

us

Weak transition process from s-quark to u-quark 



Semi-leptonic decays of octet baryons (p, n, Λ, Σ, Ξ)

Hyperon β-decay

B1 → B2 + l + ν̄l

✓ Simple V-A structure (weak matrix element)

✓ Described by six form factors

�B2|Vα − Aα|B1� = ūB2(p
�)[γαf1(q2) + σαβqβ

f2(q2)
MB1 + MB2

+ iqα
f3(q2)

MB1 + MB2

qα = (pB1 − pB2)α = (pl + pν)α

+γαγ5g1(q2) + σαβqβγ5
g2(q2)

MB1 + MB2

+ iqαγ5
g3(q2)

MB1 + MB2

]uB1(p)



Semi-leptonic decays of octet baryons (p, n, Λ, Σ, Ξ)

Hyperon β-decay

B1 → B2 + l + ν̄l

✓ Simple V-A structure (weak matrix element)

✓ Described by six form factors

✓ four independent channels (iso-spin limit : mu=md)

Σ→ n Ξ→ ΣΞ→ ΛΛ→ p



Semi-leptonic decays of octet baryons (p, n, Λ, Σ, Ξ)

Hyperon β-decay

B1 → B2 + l + ν̄l

✓ Simple V-A structure (weak matrix element)

✓ Described by six form factors

✓ four independent channels (iso-spin limit : mu=md)

!Unitarity of the CKM matrix (|Vus|)
!Proton spin problem



" Hyperon beta decay provides a determination of |Vus|

CKM Unitarity

transition
（Weak process） W−

e−

νe

us
Vus

Decay rate ∝ |Vus|2|f1(0)|2

Σ−(sdd) n(udd)

W− e−
νe

Quantum correction by strong interaction

Recall:
In the exact flavor SU(3) limit, the weak 
vector coupling doesn’t receive any quantum 
corrections even inside hadrons



SU(3) breaking effects are less known in hyperon decays

~4%
K!π

kaon semi-leptonic decays (kl3 decays)

SU(3) breaking corrections on Vus



SU(3) breaking effects are less known in hyperon decays

~4%
K!π

kaon semi-leptonic decays (kl3 decays)

SU(3) breaking corrections on Vus

!Model independent evaluation of flavor SU(3)-breaking ��
corrections is primarily required

! It can be achieved with high accuracy by lattice QCD



2+1 flavor DWF results
‣ 2+1 flavor RBC+UKQCD gauge configurations
• Domain wall fermions and Iwasaki gauge action 

• coarser lattice: L3 x T x L5 = 243 x 64 x 16 (β=2.13, 1/a~1.7 GeV)

• mud=0.005, 0.01, 0.02 (3 lightest u,d quark masses) 

• fixed strange quark masses at ms=0.04
✓ partly published in PRD86 (12) 114502

• finer lattice: L3 x T x L5 = 323 x 64 x 16 (β=2.25, 1/a~2.3 GeV)
• mud=0.004, 0.006, 0.008 (3 lightest u,d quark masses)

• fixed strange quark masses at ms=0.03
• partly reported at Lattice 2013

• Σ→N and Ξ→Σ decays 

mπ [MeV] # of meas. src-sink sep.
330 240 x 4 12
420 120 x 4 12
570 80 x 4 12

mπ [MeV] # of meas. src-sink sep.
290 120 x 8 15
345 120 x 8 15
390 120 x 8 15
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Coarse lattice data (published) 

This functional form is motivated by the Ademollo-Gatto Theorem.

Fitting form:
f̃1(0) = C0 + (C1 + C2 · (M2

K + M2
π)) · (M2

K −M2
π)2

SS, Phys. Rev. D86, (2012) 114502
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Coarse lattice data (updated)

This functional form is motivated by the Ademollo-Gatto Theorem.

Fitting form:
f̃1(0) = C0 + (C1 + C2 · (M2

K + M2
π)) · (M2

K −M2
π)2

increase # of src points from 2 to 4
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Comparison of f1(0) on coarse and fine lattices
include fine lattice data 

good scaling behavior (cutoff effect is small)
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Comparison of f1(0) on coarse and fine lattices

needs a detailed study of the strange quark mass dependence since the simulated 
strange quark mass on both ensembles are not exactly at the physical point

▶
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Simultaneous global fitting of both data sets

Take into account the slight deviation of the strange mass from the physical one by 
using the leading order of ChPT form (GMOR relation) for the pion and kaon masses in 
combined fits. 

▶

χ2/d.o.f. = 0.61 χ2/d.o.f. = 1.27



Simultaneous global fitting of both data sets
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χ2/d.o.f. = 0.61 χ2/d.o.f. = 1.27

fΣ→N
1 (0) = −0.9635(35)stat.(38)q2(89)mq

fΞ→Σ
1 (0) = +0.9753(28)stat.(2)q2(25)mq

less than 1% level accuracy



0.260.240.220.200.18

 |f(0)Vus| (exp)
 |Vus|
 Unitarity 

!"#
 
$"#
 
%"!
 
%"$

Γ ≈ G2
F

60π3
(MB1 −MB2)

5(1− 3δ)|Vus|2|f1(0)|2
�
1 + 3

����
g1(0)
f1(0)

����
2

+ · · ·
�

δ =
MB1 −MB2

MB1 + MB2

∼ 0.1− 0.2

？

？

Vus is determined by combining the experimental 
values with the lattice calculations of f1(0) 



0.260.240.220.200.18

 |f(0)Vus| (exp)
 |Vus|
 Unitarity 

!"#
 
$"#
 
%"!
 
%"$

Γ ≈ G2
F

60π3
(MB1 −MB2)

5(1− 3δ)|Vus|2|f1(0)|2
�
1 + 3

����
g1(0)
f1(0)

����
2

+ · · ·
�

δ =
MB1 −MB2

MB1 + MB2

∼ 0.1− 0.2

？

？
CK
M u
nita
rity
 vio
lati
on？

Vus is determined by combining the experimental 
values with the lattice calculations of f1(0) 



0.260.240.220.200.18

 |f(0)Vus| (exp)
 |Vus|
 Unitarity 

!"#
 
$"#
 
%"!
 
%"$

Γ ≈ G2
F

60π3
(MB1 −MB2)

5(1− 3δ)|Vus|2|f1(0)|2
�
1 + 3

����
g1(0)
f1(0)

����
2

+ · · ·
�

δ =
MB1 −MB2

MB1 + MB2

∼ 0.1− 0.2

？

？
CK
M u
nita
rity
 vio
lati
on？

Determine g1/f1 from the angular 
distribution of the final lepton

Vus is determined by combining the experimental 
values with the lattice calculations of f1(0) 



0.260.240.220.200.18

 |f(0)Vus| (exp)
 |Vus|
 Unitarity 

!"#
 
$"#
 
%"!
 
%"$

Γ ≈ G2
F

60π3
(MB1 −MB2)

5(1− 3δ)|Vus|2|f1(0)|2
�
1 + 3

����
g1(0)
f1(0)

����
2

+ · · ·
�

δ =
MB1 −MB2

MB1 + MB2

∼ 0.1− 0.2

？

？
Determine g1/f1 from the angular 
distribution of the final lepton

Vus is determined by combining the experimental 
values with the lattice calculations of f1(0) 

Hid
den
 SU
(3)
 br
eak
ing
 eff
ect
？

g1(0)
f1(0)

− 0.133
g2(0)
f1(0)

= −0.327(20)



•time reversal invariance requires all 6 form factor to be real
•transformation properties under the SU(3) analog of G-parity

•SU(3) G-parity invariance requires G = Ce−iπT2,5,7

e.g. neutron beta decay

Second-class Gf3(q2)G−1 = −f3(q2)

First-class Gf1,2(q2)G−1 = +f1,2(q2) Gg1,3(q2)G−1 = −g1,3(q2)

Gg2(q2)G−1 = +g2(q2)

f3(q2) = 0 g2(q2) = 0

�B2|Vα − Aα|B1� = ūB2(p
�)[γαf1(q2) + σαβqβ

f2(q2)
MB1 + MB2

+ iqα
f3(q2)

MB1 + MB2

+γαγ5g1(q2) + σαβqβγ5
g2(q2)

MB1 + MB2

+ iqαγ5
g3(q2)

MB1 + MB2

]uB1(p)

induced tensor form factor (weak electricity)induced scalar form factor

Exact SU(3) symmetry world

axial-vector

vector



g2(q2) �= 0f3(q2) �= 0

•time reversal invariance requires all 6 form factor to be real
•transformation properties under the SU(3) analog of G-parity

•Flavor SU(3) breaking induces G = Ce−iπT2,5,7

e.g. neutron beta decay

Second-class Gf3(q2)G−1 = −f3(q2)

First-class Gf1,2(q2)G−1 = +f1,2(q2) Gg1,3(q2)G−1 = −g1,3(q2)

Gg2(q2)G−1 = +g2(q2)

�B2|Vα − Aα|B1� = ūB2(p
�)[γαf1(q2) + σαβqβ

f2(q2)
MB1 + MB2

+ iqα
f3(q2)

MB1 + MB2

+γαγ5g1(q2) + σαβqβγ5
g2(q2)

MB1 + MB2

+ iqαγ5
g3(q2)

MB1 + MB2

]uB1(p)

induced scalar form factor

Induced 2nd-class form factors

induced tensor form factor (weak electricity)

axial-vector

vector
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Quenched simulations

D. Guadagonoli et al., NPB761, 63 (07)

����
g2(0)
f1(0)

���� = 0.63



Full QCD result of g2



ΛA,B→b
L ∝ Tr

�
P

5
z �Ob(tsink)Az(t)OB(tsrc)�

�

ΛA,B→b
T ∝ Tr

�
P

5
z �Ob(tsink)Ax,y(t)OB(tsrc)�

�

ΛA,B→b
0 ∝ Tr

�
P

5
z �Ob(tsink)At(t)OB(tsrc)�

�

P5
z = (1 + γ4)γ5γz

Three types of 3-pt functions
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SS, T.Yamazaki, PRD79 (09) 074508



Three types of 3-pt functions

In Fig. 11, we summarize our result and the experimen-
tal values combined with predictions from the center-of-
mass correction approach [29] and the 1=Nc expansion
approach [26]. Although the experimental data is not yet
sufficiently precise to determine either the size, or the sign,
of the SU(3)-breaking corrections, our result suggests that
the symmetry-breaking correction is likely small but posi-
tive. It is worth mentioning that the sign of our observed
corrections is opposite to the model predictions, but in
agreement with that of the !þ ! n decay measured in
quenched lattice QCD [13].

VI. RESULTS FOR OTHER FORM FACTORS

A. Computational method

The kinematics of jqj2 ¼ 0 allows only a particular
combination of the projection operator (P ) and the
Lorentz index of the currents (!) in either vector or
axial-vector channels [15]. However, in the case if spatial
momentum transfer q is nonzero, all three-point correla-
tion functions defined in Sec. III C are calculable.
Therefore, three form factors at finite jqj can be obtained
individually by solving simultaneous linear equations. For
the vector channel, the simultaneous linear equations are
given by

1 # EB#MB
MBþMb

# EB#Mb
MBþMb

1 # EB#Mb
MBþMb

# EBþMB
MBþMb

1 1 0

0
B@

1
CA

fB!b
1 ðq2Þ

fB!b
2 ðq2Þ

fB!b
3 ðq2Þ

0
B@

1
CA ¼

"V;B!b
0

"V;B!b
S

"V;B!b
T

0
B@

1
CA:

(44)

One gets each form factor by inverting the above equations
[61] as

fB!b
1 ðq2Þ ¼ MB þMb

2Mb

!
"V;B!b

0 # EB #Mb

EB þMB
"V;B!b

S

# M2
B þM2

b # 2EBMb

ðMB þMbÞðEB þMBÞ
"V;B!b

T

"
; (45)

fB!b
2 ðq2Þ ¼ MB þMb

2Mb

!
#"V;B!b

0 þ EB #Mb

EB þMB
"V;B!b

S

þMB þMb

EB þMB
"V;B!b

T

"
; (46)

fB!b
3 ðq2Þ ¼ MB þMb

2Mb

!
"V;B!b

0 # EB þMb

EB þMB
"V;B!b

S

#MB #Mb

EB þMB
"V;B!b

T

"
: (47)

Similarly, three-point correlation functions of the axial-
vector part are also described by the following simulta-
neous linear equations,

1 #MB#Mb
MBþMb

0

0 Mb
MBþMb

Mb
MBþMb

1 # EBþMB
MBþMb

# EB#Mb
MBþMb

0
BB@

1
CCA

gB!b
1 ðq2Þ

gB!b
2 ðq2Þ

gB!b
3 ðq2Þ

0
B@

1
CA

¼
"A;B!b

L ðqz ¼ 0Þ
"A;B!b

T

"A;B!b
0

0
B@

1
CA (48)

and then each individual form factor is given by inverting
the above equation as

gB!b
1 ðq2Þ ¼ MB þMb

2Mb

!
"A;B!b

L ðqz ¼ 0Þ

#MB #Mb

MB þMb

#
"A;B!b

0 þ EB #Mb

Mb
"A;B!b

T

$"
;

(49)

gB!b
2 ðq2Þ ¼ MB þMb

2Mb

!
"A;B!b

L ðqz ¼ 0Þ

#"A;B!b
0 # EB #Mb

Mb
"A;B!b

T

"
; (50)

gB!b
3 ðq2Þ ¼ MB þMb

2Mb

!
#"A;B!b

L ðqz ¼ 0Þ

þ"A;B!b
0 þ EB þMb

Mb
"A;B!b

T

"
: (51)

Here we remark that as described previously, we utilize all
possible permutations of the lattice momentum including
both positive and negative directions and adopt four non-
zero values of three-momentum transfer q ¼ 2"

L n (n2 ¼ 1,
2, 3, 4). Here, it should be reminded that the z direction is
chosen as the polarized direction in this study. This fact
makes the analysis of the axial-vector channel more com-
plex than the vector channel. Indeed, the longitudinal
momentum (qz) dependence explicitly enters in "A

L.
Accordingly, there are two types of kinematics, qz ! 0
and qz ¼ 0 in the three-momentum transfer, except for
the case of n2 ¼ 3 where qz is always nonzero. In other
words, "A;B!b

L ðqz ¼ 0Þ at n2 ¼ 3 cannot be calculated

0 0.2 0.4 0.6 0.8 1 1.2 1.4

[g1(0)/f1(0)]ΞΣ/[g1(0)/f1(0)]np

Model estimate
1/Nc expansion
Expt. (KTeV-FNAL)
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FIG. 11 (color online). Comparison among model predictions,
experimental data (KTeV-Fermilab) and our lattice result for the
ratio of ½g1ð0Þ=f1ð0Þ'#!! and its SU(3) counterpart
½g1ð0Þ=f1ð0Þ'n!p.

SHOICHI SASAKI AND TAKESHI YAMAZAKI PHYSICAL REVIEW D 79, 074508 (2009)
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→Three types of form factors

In Fig. 11, we summarize our result and the experimen-
tal values combined with predictions from the center-of-
mass correction approach [29] and the 1=Nc expansion
approach [26]. Although the experimental data is not yet
sufficiently precise to determine either the size, or the sign,
of the SU(3)-breaking corrections, our result suggests that
the symmetry-breaking correction is likely small but posi-
tive. It is worth mentioning that the sign of our observed
corrections is opposite to the model predictions, but in
agreement with that of the !þ ! n decay measured in
quenched lattice QCD [13].
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A. Computational method

The kinematics of jqj2 ¼ 0 allows only a particular
combination of the projection operator (P ) and the
Lorentz index of the currents (!) in either vector or
axial-vector channels [15]. However, in the case if spatial
momentum transfer q is nonzero, all three-point correla-
tion functions defined in Sec. III C are calculable.
Therefore, three form factors at finite jqj can be obtained
individually by solving simultaneous linear equations. For
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0 þ EB #Mb

EB þMB
"V;B!b

S

þMB þMb

EB þMB
"V;B!b

T

"
; (46)

fB!b
3 ðq2Þ ¼ MB þMb

2Mb

!
"V;B!b

0 # EB þMb

EB þMB
"V;B!b

S

#MB #Mb

EB þMB
"V;B!b

T

"
: (47)

Similarly, three-point correlation functions of the axial-
vector part are also described by the following simulta-
neous linear equations,

1 #MB#Mb
MBþMb

0

0 Mb
MBþMb

Mb
MBþMb

1 # EBþMB
MBþMb

# EB#Mb
MBþMb

0
BB@

1
CCA

gB!b
1 ðq2Þ

gB!b
2 ðq2Þ

gB!b
3 ðq2Þ

0
B@

1
CA

¼
"A;B!b

L ðqz ¼ 0Þ
"A;B!b

T

"A;B!b
0

0
B@

1
CA (48)

and then each individual form factor is given by inverting
the above equation as

gB!b
1 ðq2Þ ¼ MB þMb

2Mb

!
"A;B!b

L ðqz ¼ 0Þ

#MB #Mb

MB þMb

#
"A;B!b

0 þ EB #Mb

Mb
"A;B!b

T

$"
;

(49)

gB!b
2 ðq2Þ ¼ MB þMb

2Mb

!
"A;B!b

L ðqz ¼ 0Þ

#"A;B!b
0 # EB #Mb

Mb
"A;B!b

T

"
; (50)

gB!b
3 ðq2Þ ¼ MB þMb

2Mb

!
#"A;B!b

L ðqz ¼ 0Þ

þ"A;B!b
0 þ EB þMb

Mb
"A;B!b

T

"
: (51)

Here we remark that as described previously, we utilize all
possible permutations of the lattice momentum including
both positive and negative directions and adopt four non-
zero values of three-momentum transfer q ¼ 2"

L n (n2 ¼ 1,
2, 3, 4). Here, it should be reminded that the z direction is
chosen as the polarized direction in this study. This fact
makes the analysis of the axial-vector channel more com-
plex than the vector channel. Indeed, the longitudinal
momentum (qz) dependence explicitly enters in "A

L.
Accordingly, there are two types of kinematics, qz ! 0
and qz ¼ 0 in the three-momentum transfer, except for
the case of n2 ¼ 3 where qz is always nonzero. In other
words, "A;B!b

L ðqz ¼ 0Þ at n2 ¼ 3 cannot be calculated

0 0.2 0.4 0.6 0.8 1 1.2 1.4

[g1(0)/f1(0)]ΞΣ/[g1(0)/f1(0)]np

Model estimate
1/Nc expansion
Expt. (KTeV-FNAL)
Lattice (quench)

FIG. 11 (color online). Comparison among model predictions,
experimental data (KTeV-Fermilab) and our lattice result for the
ratio of ½g1ð0Þ=f1ð0Þ'#!! and its SU(3) counterpart
½g1ð0Þ=f1ð0Þ'n!p.
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Direct measurement for g2 form factor 
2+1 flavor DWF simulations 
coarser lattice: 243 x 64 x 16 (β=2.13, 1/a~1.7 GeV)
Σ→N channel

mπ = 330 MeV mπ = 420 MeV mπ = 570 MeV

δ=0.079(2) δ=0.054(1) δ=0.031(1)

cf. δphys=0.120
SU(3) breaking
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ZV = 0.7190(8) ≈ ZA

β=2.13 at mud=0.005, ms=0.04

mπ = 330 MeV

preliminary

cf. δphys=0.120

CKM Unitarity　⇔ g2(0) ≈ 0.47

δ=0.079(2)
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Direct measurement for g2 form factor 



Summary
We have studied the SU(3) breaking effects on hyperon beta 
decays using 2+1 flavor dynamical lattice QCD.
✓ Hyperon vector coupling f1(0) reaches a sub percent level accuracy.

- The current Σ→N data with lattice input of f1(0) moves slightly off the 
CKM unitarity condition.

✓ Conversely, f1(0) + CKM unitarity may expose a size of the induced 2nd-
class form factor g2, which was less-known and ignored in experiments.

- g2(0)~0.4-0.5 ⇔ its size is consistent with the first-order SU(3) 
symmetry-breaking correction.

- In lattice direct measurement, non-zero g2 form factor is confirmed and 
its size is roughly consistent with the indirect estimation.

➡ The CKM unitarity could be satisfied in Σ→N decay.
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Combined fit result 
1/a=1.73 GeV (Coarse) at physical ms
1/a=2.28 GeV (Fine) at physical ms
physical point 

"N

Update of f1(0) value

f1(0) = −0.9698(106)
2+1 flavor DWF calculations
SS, PRD86, 114502 (12)

Only coarse lattice result 

small cutoff error

f̃1(0) = C0 + (C1 + C2 · (M2
K + M2

π)) · (M2
K −M2

π)2

f1(0) = −0.9718(76)
statistics increases

Combined with both fine and coarse 
results

f1(0) = −0.9635(35)



✓ The tendency of the SU(3)-breaking correction disagrees with the 
latest baryon ChPT result.

SU(3) corrections [%]

‣ suggests that baryon ChPT seems to have a serious convergence problem

Comparison with ChPT results

O(p4) HBChPT O(p4) EOMS-CBChPT 2+1f DWF-LQCD
octet + decuplet octet + decuplet mπ = 330 MeV 430 MeV 560 MeV

Λ → N +2.8 +11.2 −3.6+1.2
−0.9 +0.1+1.3

−1.0 — — —
Σ → N +4.1 +37.3 +3.9+3.8

−2.8 +8.7+4.2
−3.1 −3.8 ± 1.4 −1.8 ± 0.8 −0.8 ± 0.3

Ξ → Λ +4.4 +22.2 −1.2+2.4
−1.8 +4.0+2.8

−2.1 — — —
Ξ → Σ +1.0 +1.1 −1.3+0.3

−0.2 +1.7+2.2
−1.6 −1.8 ± 0.8 −2.6 ± 0.6 −0.9 ± 0.2

O(p4) HBChPT O(p4) EOMS-CBChPT Lattice QCD
LO full octet + decuplet quench 2+1 flavor

Λ → N −9.5 +2.8 −3.6+1.2
−0.9 +0.1+1.3

−1.0 — —
Σ → N +0.7 +4.1 +3.9+3.8

−2.8 +8.7+4.2
−3.1 −1.2 ± 2.9 −3.0 ± 1.1

Ξ → Λ −6.2 +4.4 −1.2+2.4
−1.8 +4.0+2.8

−2.1 — —
Ξ → Σ −9.2 +1.0 −1.3+0.3

−0.2 +1.7+2.2
−1.6 −1.3 ± 1.9 −2.7 ± 0.7

O(p3) EOMS-CBChPT O(p4) EOMS-CBChPT 2+1f DWF-LQCD
octet + decuplet octet + decuplet physical point

Λ → N −3.8 −3.1 −3.6+1.2
−0.9 +0.1+1.3

−1.0 —
Σ → N −0.8 −2.2 +3.9+3.8

−2.8 +8.7+4.2
−3.1 −3.6 ± 0.5

Ξ → Λ −2.9 −2.9 −1.2+2.4
−1.8 +4.0+2.8

−2.1 —
Ξ → Σ −3.7 −3.0 −1.3+0.3

−0.2 +1.7+2.2
−1.6 −2.0 ± 0.2

Large Nc Bag model Quark model
pion cloud effect

Λ → N +2 ± 2 -3.0 -1.3 -2.4 +0.1
Σ → N +4 ± 3 -3.0 -1.3 -2.4 +0.9
Ξ → Λ +4 ± 4 -3.0 -1.3 -2.4 +2.2
Ξ → Σ +8 ± 5 -3.0 -1.3 -2.4 +4.2

1

−3.7± 0.4

−2.5± 0.3


