SU(3)-breaking effects and induced second-class form factors in hyperon beta decays from 2+1 flavor lattice QCD

Shoichi Sasaki (Tohoku Univ.)

Hyperon β-decay

Semi-leptonic decays of octet baryons ($\mathrm{p}, \mathrm{n}, \wedge, \Sigma, \equiv$)

$$
B_{1} \rightarrow B_{2}+l+\bar{\nu}_{l}
$$

Weak transition process from s-quark to u-quark

Hyperon β-decay

Semi-leptonic decays of octet baryons ($\mathrm{p}, \mathrm{n}, \wedge, \Sigma, \equiv$)

$$
B_{1} \rightarrow B_{2}+l+\bar{\nu}_{l}
$$

\checkmark Simple V-A structure (weak matrix element)
\checkmark Described by six form factors

$$
\begin{array}{r}
\left\langle B_{2}\right| V_{\alpha}-A_{\alpha}\left|B_{1}\right\rangle=\bar{u}_{B_{2}}\left(p^{\prime}\right)\left[\gamma_{\alpha} f_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \frac{f_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \frac{f_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}\right. \\
\left.+\gamma_{\alpha} \gamma_{5} g_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \gamma_{5} \frac{g_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \gamma_{5} \frac{g_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}\right] u_{B_{1}}(p) \\
q_{\alpha}=\left(p_{B_{1}}-p_{B_{2}}\right)_{\alpha}=\left(p_{l}+p_{\nu}\right)_{\alpha}
\end{array}
$$

Hyperon β-decay

Semi-leptonic decays of octet baryons (p, n, \wedge, Σ, \equiv)

$$
B_{1} \rightarrow B_{2}+l+\bar{\nu}_{l}
$$

\checkmark Simple V-A structure (weak matrix element)
\checkmark Described by six form factors
\checkmark four independent channels (iso-spin limit : mu=md)

$$
\Lambda \rightarrow p \quad \Sigma \rightarrow n \quad \Xi \rightarrow \Lambda \quad \Xi \rightarrow \Sigma
$$

Hyperon β-decay

Semi-leptonic decays of octet baryons (p, n, \wedge, Σ, \equiv)

$$
B_{1} \rightarrow B_{2}+l+\bar{\nu}_{l}
$$

\checkmark Simple V-A structure (weak matrix element)
\checkmark Described by six form factors
\checkmark four independent channels (iso-spin limit : mu=md)
*Unitarity of the CKM matrix (|Vus|)
*Proton spin problem

CKM Unitarity

$s \longrightarrow u$ transition (Weak process)

\star Hyperon beta decay provides a determination of $\left|\mathrm{V}_{\mathrm{us}}\right|$
Decay rate $\propto\left|V_{u s}\right|^{2} \underline{\left|f_{1}(0)\right|^{2}}$

Quantum correction by strong interaction

Recall:
In the exact flavor $\operatorname{SU}(3)$ limit, the weak vector coupling doesn't receive any quantum corrections even inside hadrons

SU(3) breaking corrections on Vus

SU(3) breaking effects are less known in hyperon decays

SU(3) breaking corrections on Vus

* Model independent evaluation of flavor SU(3)-breaking corrections is primarily required
* It can be achieved with high accuracy by lattice QCD

2+1 flavor DWF results

- 2+1 flavor RBC+UKQCD gauge configurations
- Domain wall fermions and Iwasaki gauge action
- coarser lattice: $L^{3} \times T \times L_{5}=24^{3} \times 64 \times 16(\beta=2.13,1 / a \sim 1.7 \mathrm{GeV})$
- mud=0.005, 0.01, 0.02 (3 lightest u,d quark masses)
- fixed strange quark masses at $\mathrm{m}_{\mathrm{s}}=0.04$ \checkmark partly published in PRD86 (12) 114502

$\mathrm{m}_{\pi}[\mathrm{MeV}]$	\# of meas.	src-sink sep.
330	240×4	12
420	120×4	12
570	80×4	12

- finer lattice: $L^{3} \times T \times L_{5}=32^{3} \times 64 \times 16(\beta=2.25,1 / a \sim 2.3 \mathrm{GeV})$
- mud=0.004, 0.006, 0.008 (3 lightest u,d quark masses)
- fixed strange quark masses at $\mathrm{m}_{\mathrm{s}}=0.03$
- partly reported at Lattice 2013

$\mathrm{m}_{\pi}[\mathrm{MeV}]$	\# of meas.	src-sink sep.
290	120×8	15
345	120×8	15
390	120×8	15

- $\Sigma \rightarrow \mathbf{N}$ and $\equiv \rightarrow \boldsymbol{\Sigma}$ decays

Coarse lattice data (published)

SS, Phys. Rev. D86, (2012) 114502

Fitting form:

$$
\tilde{f}_{1}(0)=C_{0}+\left(C_{1}+C_{2} \cdot\left(M_{K}^{2}+M_{\pi}^{2}\right)\right) \cdot\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}
$$

Coarse lattice data (updated)

increase \# of src points from 2 to 4

Fitting form:

$$
\tilde{f}_{1}(0)=C_{0}+\left(C_{1}+C_{2} \cdot\left(M_{K}^{2}+M_{\pi}^{2}\right)\right) \cdot\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}
$$

Comparison of $f_{1}(0)$ on coarse and fine lattices

include fine lattice data

good scaling behavior (cutoff effect is small)

Comparison of $f_{1}(0)$ on coarse and fine lattices

- needs a detailed study of the strange quark mass dependence since the simulated strange quark mass on both ensembles are not exactly at the physical point

Simultaneous global fitting of both data sets

- Take into account the slight deviation of the strange mass from the physical one by using the leading order of ChPT form (GMOR relation) for the pion and kaon masses in combined fits.

Simultaneous global fitting of both data sets

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

$$
\begin{array}{r}
\Gamma \approx \frac{G_{F}^{2}}{60 \pi^{3}}\left(M_{B_{1}}-M_{B_{2}}\right)^{5}(1-3 \delta)\left|V_{u s}\right|^{2}\left|f_{1}(0)\right|^{2}\left[1+3\left|\frac{g_{1}(0)}{f_{1}(0)}\right|^{2}+\cdots\right] \\
\delta=\frac{M_{B_{1}}-M_{B_{2}}}{M_{B_{1}}+M_{B_{2}}} \sim 0.1-0.2
\end{array}
$$

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

$$
\begin{array}{r}
\Gamma \approx \frac{G_{F}^{2}}{60 \pi^{3}}\left(M_{B_{1}}-M_{B_{2}}\right)^{5}(1-3 \delta)\left|V_{u s}\right|^{2}\left|f_{1}(0)\right|^{2}\left[1+3\left|\frac{g_{1}(0)}{f_{1}(0)}\right|^{2}+\cdots\right] \\
\delta=\frac{M_{B_{1}}-M_{B_{2}}}{M_{B_{1}}+M_{B_{2}}} \sim 0.1-0.2
\end{array}
$$

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

Exact SU(3) symmetry world

$$
\begin{aligned}
& \left\langle B_{2}\right| V_{\alpha}-A_{\alpha}\left|B_{1}\right\rangle=\bar{u}_{B_{2}}\left(p^{\prime}\right)^{\vdots}\left[\gamma_{\alpha} f_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \frac{f_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \frac{f_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}\right. \\
& +\gamma_{\alpha} \gamma_{5} g_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \gamma_{5} \frac{g_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \gamma_{5} \frac{g_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}} u_{B_{1}}(p)
\end{aligned}
$$

- time reversal invariance requires all 6 form factor to be real
- transformation properties under the $\mathrm{SU}(3)$ analog of G-parity

First-class $\quad G f_{1,2}\left(q^{2}\right) G^{-1}=+f_{1,2}\left(q^{2}\right) \quad G g_{1,3}\left(q^{2}\right) G^{-1}=-g_{1,3}\left(q^{2}\right)$
Second-class $G f_{3}\left(q^{2}\right) G^{-1}=-f_{3}\left(q^{2}\right) \quad G g_{2}\left(q^{2}\right) G^{-1}=+g_{2}\left(q^{2}\right)$

- SU(3) G-parity invariance requires
$G=C e^{-i \pi T_{2,5,7}}$

$$
f_{3}\left(q^{2}\right)=0 \quad g_{2}\left(q^{2}\right)=0
$$

e.g. neutron beta decay
induced scalar form factor

Induced 2nd-class form factors

- time reversal invariance requires all 6 form factor to be real
- transformation properties under the $\mathrm{SU}(3)$ analog of G-parity

$$
\begin{aligned}
\text { First-class } & G f_{1,2}\left(q^{2}\right) G^{-1} & =+f_{1,2}\left(q^{2}\right) & G g_{1,3}\left(q^{2}\right) G^{-1}
\end{aligned}=-g_{1,3}\left(q^{2}\right) ~ 子 ~ G g_{2}\left(q^{2}\right) G^{-1}=+g_{2}\left(q^{2}\right)
$$

- Flavor SU(3) breaking induces
$G=C e^{-i \pi T_{2,5,7}}$

$$
f_{3}\left(q^{2}\right) \neq 0
$$

$$
g_{2}\left(q^{2}\right) \neq 0
$$

e.g. neutron beta decay

$$
\begin{aligned}
& \left\langle B_{2}\right| V_{\alpha}-A_{\alpha}\left|B_{1}\right\rangle=\bar{u}_{B_{2}}\left(p^{\prime}\right):\left(\gamma_{\alpha} f_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \frac{f_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \frac{f_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}\right. \\
& \text {;---axial-vector } \\
& +\gamma_{\alpha} \gamma_{5} g_{1}\left(q^{2}\right)+\sigma_{\alpha \beta} q_{\beta} \gamma_{5} \frac{g_{2}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}}+i q_{\alpha} \gamma_{5} \frac{g_{3}\left(q^{2}\right)}{M_{B_{1}}+M_{B_{2}}} u_{B_{1}}(p)
\end{aligned}
$$

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

Vus is determined by combining the experimental values with the lattice calculations of $f_{1}(0)$

$$
\text { Determine } g_{1} / f_{1} \text { from the angular }
$$ distribution of the final lepton

CKM Unitarity $\Leftrightarrow g_{2}(0) \approx 0.47$
$\left.\left.1 \approx \frac{A}{60 \pi^{3}}\left(I M_{B_{1}}-N V_{B_{2}}\right)^{\sim}(1-30)\left|V_{u s}\right|^{-}\left|J_{1}(U)\right|^{-} \right\rvert\, 1+\left(3\left|\frac{g_{1}(0)}{f_{1}(0)}\right|^{2}\right)+\cdots\right]$
$\delta=\frac{M_{B_{1}}-M_{B_{2}}}{M_{B_{1}}+M_{B_{2}}} \sim 0.1-0.2$

Vus is determined by combinina the experimental

 values with the lattice cal Quenched simulations

$$
\left|\frac{g_{2}(0)}{f_{1}(0)}\right|=0.63
$$

D. Guadagonoli et al., NPB76 1, 63 (07)

CKM Unitarity $\Leftrightarrow g_{2}(0) \approx 0.47$
$\left.\left.1 \approx \frac{.}{60 \pi^{3}}\left(I M_{B_{1}}-N V_{B_{2}}\right)^{\sim}(1-30)\left|V_{u s}\right|^{-}\left|J_{1}(U)\right|^{-} \right\rvert\, 1+\left(3\left|\frac{g_{1}(0)}{f_{1}(0)}\right|^{2}\right)+\cdots\right]$
$\delta=\frac{M_{B_{1}}-M_{B_{2}}}{M_{B_{1}}+M_{B_{2}}} \sim 0.1-0.2$

Full QCD result of g2

Three types of 3-pt functions

$$
\begin{array}{r}
\Lambda_{L}^{A, B \rightarrow b} \propto \operatorname{Tr}\left\{\mathcal{P}_{z}^{5}\left\langle\mathcal{O}_{b}\left(t_{\text {sink }}\right) A_{z}(t) \overline{\mathcal{O}}_{B}\left(t_{\mathrm{src}}\right)\right\rangle\right\} \\
\mathcal{P}_{z}^{5}=\left(1+\gamma_{4}\right) \gamma_{5} \gamma_{z}
\end{array}
$$

$\Lambda_{T}^{A, B \rightarrow b} \propto \operatorname{Tr}\left\{\mathcal{P}_{z}^{5}\left\langle\mathcal{O}_{b}\left(t_{\text {sink }}\right) A_{x, y}(t) \overline{\mathcal{O}}_{B}\left(t_{\text {src }}\right)\right\rangle\right\}$
$\Lambda_{0}^{A, B \rightarrow b} \propto \operatorname{Tr}\left\{\mathcal{P}_{z}^{5}\left\langle\mathcal{O}_{b}\left(t_{\text {sink }}\right) A_{t}(t) \overline{\mathcal{O}}_{B}\left(t_{\text {src }}\right)\right\rangle\right\}$

SS, T.Yamazaki, PRD79 (09) 074508

$$
\mathbf{q}=\left(q_{x}, q_{y}, q_{z}\right)=\frac{2 \pi}{L}(1,0,0)
$$

Three types of 3-pt functions

$$
\mathbf{q}=\left(q_{x}, q_{y}, q_{z}\right)=\frac{2 \pi}{L}(1,0,0)
$$

\rightarrow Three types of form factors

$$
\left(\begin{array}{ccc}
1 & -\frac{M_{B}-M_{b}}{M_{B}+M_{b}} & 0 \\
0 & \frac{M_{b}}{M_{B}+M_{b}} & \frac{M_{b}}{M_{B}+M_{b}} \\
1 & -\frac{E_{B}+M_{B}}{M_{B}+M_{b}} & -\frac{E_{B}-M_{b}}{M_{B}+M_{b}}
\end{array}\right)\left(\begin{array}{c}
g_{1}^{B \rightarrow b}\left(q^{2}\right) \\
g_{2}^{B \rightarrow b}\left(q^{2}\right) \\
g_{3}^{B \rightarrow b}\left(q^{2}\right)
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
\Lambda_{L}^{A, B \rightarrow b}\left(q_{z}=0\right) \\
\Lambda_{T}^{A, B \rightarrow b} \\
\Lambda_{0}^{A, B \rightarrow b}
\end{array}\right)
$$

$$
\begin{aligned}
g_{2}^{B \rightarrow b}\left(q^{2}\right)= & \frac{M_{B}+M_{b}}{2 M_{b}}\left[\Lambda_{L}^{A, B \rightarrow b}\left(q_{z}=0\right)\right. \\
& \left.-\Lambda_{0}^{A, B \rightarrow b}-\frac{E_{B}-M_{b}}{M_{b}} \Lambda_{T}^{A, B \rightarrow b}\right]
\end{aligned}
$$

SS, T.Yamazaki, PRD79 (09) 074508

Direct measurement for g_{2} form factor

2+1 flavor DWF simulations

coarser lattice: 24^{3} x 64×16 ($\beta=2.13,1 / a \sim 1.7 \mathrm{GeV}$)

$\Sigma \rightarrow \mathrm{N}$ channel

$$
\delta=\frac{M_{\Sigma}-M_{N}}{M_{\Sigma}+M_{N}}
$$

SU(3) breaking

$$
\text { cf. } \delta \text { phys }=0.120
$$

Direct measurement for g_{2} form factor

скм Unitarity $\Leftrightarrow g_{2}(0) \approx 0.47 \quad Z_{V}=0.7190(8) \approx Z_{A}$

cf. δ phys $=0.120$
$q^{2}\left[(\mathrm{GeV})^{2}\right]$

Summary

We have studied the $\mathrm{SU}(3)$ breaking effects on hyperon beta decays using 2+1 flavor dynamical lattice QCD.
\checkmark Hyperon vector coupling $f_{1}(0)$ reaches a sub percent level accuracy.

- The current $\boldsymbol{\Sigma} \rightarrow \mathbf{N}$ data with lattice input of $\mathrm{f}_{1}(0)$ moves slightly off the CKM unitarity condition.
\checkmark Conversely, $\mathrm{f}_{1}(0)+$ CKM unitarity may expose a size of the induced $2 n d-$ class form factor g_{2}, which was less-known and ignored in experiments.
- $\mathrm{g}_{2}(0) \sim 0.4-0.5 \Leftrightarrow$ its size is consistent with the first-order $\mathrm{SU}(3)$ symmetry-breaking correction.
- In lattice direct measurement, non-zero g2 form factor is confirmed and its size is roughly consistent with the indirect estimation.
\Rightarrow The CKM unitarity could be satisfied in $\boldsymbol{\Sigma} \rightarrow \mathbf{N}$ decay.

Update of $f_{1}(0)$ value

$$
\tilde{f}_{1}(0)=C_{0}+\left(C_{1}+C_{2} \cdot\left(M_{K}^{2}+M_{\pi}^{2}\right)\right) \cdot\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}
$$

Comparison with ChPT results

\checkmark The tendency of the $\operatorname{SU}(3)$-breaking correction disagrees with the latest baryon ChPT result.

SU(3) corrections [\%]

	$\mathcal{O}\left(p^{3}\right)$ EOMS-CBChPT		$\mathcal{O}\left(p^{4}\right)$ EOMS-CBChPT		2+1f DWF-LQCD
	octet	+ decuplet	octet	+ decuplet	physical point
$\Lambda \rightarrow N$	-3.8	-3.1	$-3.6_{-0.9}^{+1.2}$	$+0.1_{-1.0}^{+1.3}$	-
$\Sigma \rightarrow N$	-0.8	-2.2	$+3.9_{-2.8}^{+3.8}$	$+8.7_{-3.1}^{+4.2}$	-3.7 ± 0.4
$\Xi \rightarrow \Lambda$	-2.9	-2.9	$-1.2_{-1.4}^{+2.4}$	$+4.0_{-2.1}^{+2.8}$	-
$\Xi \rightarrow \Sigma$	-3.7	-3.0	$-1.3_{-0.2}^{+0.3}$	$+1.7_{-1.6}^{+2.2}$	-2.5 ± 0.3

- suggests that baryon ChPT seems to have a serious convergence problem

