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Polyakov line actions from SU(3) LGT via relative weigthts

Lattice QCD and the Sign problem

Z =
∫
DUDψ̄Dψ e−SYM(U)−SF(U;µ)

SF(U;µ) = −
∫
d4x ψ̄M(U;µ)ψ

Z =
∫
DU e−SYM(U) det M(U;µ)

numerical evaluation of bosonic integral with importance
sampling

observable 〈O〉 =
∫
DU e−SYM det MO∫
DU e−SYM det M

lack of γ5-hermiticity, γ5M(µ)γ5 = M†(−µ∗) 6= M†(µ)

determinant is complex and satisfies
[det M(µ)]∗ = det M(−µ∗)
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Polyakov line actions from SU(3) LGT via relative weigthts

Importance of the Sign problem
assymetry between matter and anti-matter

free energy of particle q /anti-particle q̄
expectation value of Polyakov loop / adjoint:

exp(− 1
T Fq) = 〈Tr P 〉

=
∫

Re(P)× Re(d$)−Im(P)× Im(d$)

exp(− 1
T Fq̄) = 〈Tr P∗〉

=
∫

Re(P)× Re(d$)+Im(P)× Im(d$)

finite chemical potential µ favors propagation of quarks
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Polyakov line actions from SU(3) LGT via relative weigthts

Possible Solutions of the Sign problem
Reweighting:
measurements of O are given a varying, oscillatory weight
f /g in the ensemble average (“average sign”)

Taylor expansion:
of the observable in powers of µ/T at µ = 0
Imaginary µ: analytic continuation of results to real µ
|QCD|:
detM = |detM|eiφ, simulations without eiφ + reweighting
Complex Langevin: stochastic quantization - evolution of
fields in a fictitious time with Brownian noise and search
for stationary solutions with correct measure
Worldline formalism and strong coupling limit:
change order of integration, partial integration over loops
and hopping parameter expansion
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Effective Polyakov Line Action

Indirect approach: Polyakov line action (SU(3) spin) model

fix Polyakov line holonomies U0(~x , 0) = Ux (temporal
gauge) and integrate out all other d.o.f.

eSP(Ux ) =
∫
DU0(~x , 0)DUkDψ

∏
x δ[Ux − U0(~x , 0)]eSL

derive SP at µ = 0, for µ > 0 we have (true to all orders of
strong coupling/hopping parameter expansion)

SµP(Ux ,U†x ) = Sµ=0
P [eNtµUx , e−NtµU†x ]

hard to compute exp[SP(Ux )], use relative weights...
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Polyakov line actions from SU(3) LGT via relative weigthts

Relative Weights Method

S ′L . . .lattice action in temporal gauge with U0(~x , 0) = U ′x ,
compute the ratio

e∆SP = exp[SP(U ′x )]
exp[SP(U ′′x )] =

∫
DUkDψeS

′
L∫

DUkDψeS
′′
L

=
∫
DUkDψ exp[S ′L − S ′′L ]eS′′L∫

DUkDψeS
′′
L

≡ 〈exp[S ′L − S ′′L ]〉′′

Ux (λ) path through configuration space parametrized by λ

U ′x = Ux (λ0 + ∆λ/2),U ′′x = Ux (λ0 −∆λ/2)→ (dSPdλ )λ0 = ∆S
∆λ
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Polyakov line actions from SU(3) LGT via relative weigthts

derivatives of SP w.r.t. Fourier components ak of

Px ≡ 1
3TrUx =

∑
k akeikx

effective Polyakov line action motivated by heavy-dense
action, where h is some inverse power of hopping
parameter and satisfies the Pauli exclusion principle as
µ→∞ - no more than three (staggered) quarks per site

Seff [Ux ] =
∑

x ,y PxK (x − y)Py

+p
∑

x log(1 + heµ/TTr [Ux ] + h2e2µ/TTr [U†x ] + h3e3µ/T )
log(1 + he−µ/TTr [Ux ] + h2e−2µ/TTr [U†x ] + h3e−3µ/T )

determine K (x − y) and h from fitting to lattice data

1
L3 (∂SP∂ak )ak=α = 2K (k)α + p

L3
∑

x (3heikx + 3h2e−ikx + c.c.)
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Polyakov line actions from SU(3) LGT via relative weigthts

Solve sign problem for the effective action

remaining sign problem can be solved by mean field theory

treatment of SU(3) spin models at finite µ is a minor
variation of standard mean field theory at zero chemical
potential
two magnetizations introduced for TrU and TrU†
determined by minimizing the free energy
basic idea is that each spin is effectively coupled to the
average spin on the lattice, not just nearest neighbors,
through non-local kernel K (x − y)
for details and comparison to complex Langevin see
Splittorff and Greensite (2012)
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Conclusions & Outlook
determined effective Polyakov line action for asqtad
staggered fermions with ma = 0.3 and Symanzik one loop
improved gauge action at β = 7.0 on 163 × 6 lattices

good agreement for the Polyakov line correlators computed
in the effective theory and underlying lattice gauge theory
solved sign problem for the effective theory by mean field
and find a phase transition and correct density limit
...
determine quadratic, quasi-local center symmetry breaking
terms which may be important at finite chemical
potential...
go on to smaller quark masses...
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Questions?

Thank You &
Derar Altarawneh, Michael Engelhardt, Manfried Faber, Martin Gal,
Jeff Greensite, Urs M. Heller, James Hettrick, Andrei Ivanov, Thomas
Layer, Štefan Olejnik, Luis Oxman, Mario Pitschmann, Jesus Saenz,
Thomas Schweigler, Wolfgang Söldner, David Vercauteren, Markus

Wellenzohn
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