Diagrammatic Monte-Carlo algorithms for large-N
 quarsitum field theories from Scriwinger-Dyson equations

 Pavel Buividovich (Regensburg University)

 Pavel Buividovich (Regensburg University) Lattice 2015, Kobe, Japan

Alexander von Humboldt Stiftung/Foundation

Motivation: Diagrammatic Monte-Carlo

Quantum field theory:

Sum over fields

Sum over interacting paths

$$
\begin{aligned}
\mathcal{Z}=\operatorname{Tr} e^{-\hat{\mathcal{H}} / k T}= & \text { Perturbative } \\
=\int \mathcal{D} \phi\left(x^{\mu}\right) \exp \left(-S_{E}\left[\phi\left(x^{\mu}\right)\right]\right) & \text { expansions }
\end{aligned}
$$

Euclidean action:

$$
S_{E}=\int d^{D} x\left(\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{m^{2}}{2} \phi^{2}+V(\phi)\right)
$$

$$
\mathcal{Z}=\sum_{k} \frac{\lambda^{k}}{k!} \exp (-L(\text { Paths connecting } k \text { vertices }))
$$

Motivation: QCD side

Recent attempts to apply DiagMC to lattice QCD at finite density and reduce sign problem

DiagMC relies on Abelian "Duality transformations"
BUT: no convenient duality transformations for non-Abelian fields Weak-coupling expansions are also cumbersome and difficult to re-sum

- DiagMC in the non-Abelian case? Avoid manual duality transformations? How to avoid Borel resummations?

Worm Algorithiss] [Prokofev, Svistunov]

- Monte-Carlo sampling of closed vacuum diagrams: nonlocal updates, closure constraint
- Worm Algorithm: sample closed diagrams + open diagram
- Local updates: open graphs \longrightarrow closed graphs
- Direct sampling of field correlators (dedicated simulations)

x, y - head and tail of the worm
$\left\langle\sigma_{x} \sigma_{y}\right\rangle \sim p(x, y)$
Correlator = probability distribution of head and tail

- Applications: systems with "simple" and convergent perturbative expansions (Ising, Hubbard, 2d fermions ...)
- Very fast and efficient algorithm!!!

General structure of SD equations

(everywhere we assume lattice discretization)
$\int \mathcal{D} \phi \frac{\partial}{\partial \phi(X)}\left(O_{1}[\phi] \ldots O_{n}[\phi] \exp (-S[\phi])\right)=0$

$$
\begin{aligned}
& \sum_{A=1}^{n}\left\langle O_{1}[\phi] \ldots \frac{\partial O_{A}[\phi]}{\partial \phi(x)} \ldots O_{n}[\phi]\right\rangle= \\
= & \left\langle O_{1}[\phi] \ldots O_{n}[\phi] \frac{\partial S[\phi]}{\partial \phi(x)}\right\rangle
\end{aligned}
$$

Choose some closed set of observables X is a collection of all labels, e.g. for scalar field theory

$$
\phi(X)=\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right\rangle, \quad X=\left\{x_{1}, \ldots, x_{n}\right\}
$$

SD equations (with disconnected correlators) are linear:

$$
\phi(X)=\sum_{Y} A(X \mid Y) \phi(Y)+b(X)
$$

A(X $\mid Y)$: infinite-dimensional, but sparse linear operator b(X): source term, typically only 1-2 elements nonzero

Stochastic solution of linear equations

 Assume: $A(X / Y), b(X)$ are positive, \| eigenvalues | $<1$$$
\phi=A \phi+b \Rightarrow \phi=(1-A)^{-1} b=\sum_{m=0}^{+\infty} A^{m} b
$$

$$
\phi(X)=\sum_{n=0}^{+\infty} \sum_{X_{0}} \ldots \sum_{X_{n}} \delta\left(X, X_{n}\right) A\left(X_{n} \mid X_{n-1}\right) \ldots A\left(X_{1} \mid X_{0}\right) b\left(X_{0}\right)
$$

Solution using the Metropolis algorithm:

Sample sequences $\left\{X_{n}, \ldots, X_{0}\right\}$ with the weight

$$
w\left(X_{n}, \ldots, X_{0}\right)=\mathcal{N}_{w}^{-1} A\left(X_{n} \mid X_{n-1}\right) \ldots A\left(X_{1} \mid X_{0}\right) b\left(X_{0}\right)
$$

Two basic transitions:

$$
\left\{X_{n+1}, X_{n}, \ldots, X_{0}\right\} \rightarrow\left\{X_{n}, \ldots, X_{0}\right\}
$$

- Add new index $\mathbf{X}_{\mathbf{n + 1}}$, $\pi\left(X_{n+1} \mid X_{n}\right)=\frac{A\left(X_{n+1} \mid X_{n}\right)}{\mathcal{N}\left(X_{n}\right)}$
- Remove index $\left\{X_{n}, X_{n-1}, \ldots, X_{0}\right\} \rightarrow\left\{X_{n-1}, \ldots, X_{0}\right\}$
- Restart $\left\{X_{0}\right\} \rightarrow\left\{X_{0}^{\prime}\right\} \quad \pi\left(X_{0}^{\prime}\right)=b\left(X_{0}^{\prime}\right) / \mathcal{N}_{b}$

$$
\mathcal{N}(Y)=\sum_{X} A(X \mid Y), \quad \mathcal{N}_{b}=\sum_{X} b(X)
$$

Stochastic solution of linear equations

- With probability $p_{+}:$Add index step
- With probability (1-p+): Remove index/Restart

Ergodicity: any sequence can be reached
 (unless $\mathbf{A}(X \mid Y)$ has some block-diagonal structure)

Acceptance probabilities (no detailed balance, Metropolis-Hastings)

$$
\alpha\left(\mathcal{S} \rightarrow \mathcal{S}^{\prime}\right)=\min \left(1, \frac{w\left(\mathcal{S}^{\prime}\right) \pi\left(\mathcal{S}^{\prime} \rightarrow \mathcal{S}\right)}{w(\mathcal{S}) \pi\left(\mathcal{S} \rightarrow \mathcal{S}^{\prime}\right)}\right)
$$

$$
\alpha_{\text {add }}=\frac{\mathcal{N}\left(X_{n}\right)\left(1-p_{+}\right)}{p_{+}}, \quad \alpha_{\text {remove }}=\frac{p_{+}}{\mathcal{N}\left(X_{n-1}\right)\left(1-p_{+}\right)}, \quad \alpha_{\text {restart }}=1 .
$$

- Parameter p_{+}can be tuned to reach optimal acceptance
- Probability distribution of $N(X)$ is crucial to asses convergence

Finally: make histogram of the last element $\boldsymbol{X}_{\boldsymbol{n}}$ in the sequence Solution $\varphi(X)$, normalization factor

$$
\mathcal{N}_{w}=\frac{\mathcal{N}_{b}}{1-\left\langle\mathcal{N}\left(X_{n}\right)\right\rangle} \Rightarrow\langle\mathcal{N}(X)\rangle<1
$$

Illustration: ϕ^{4} matrix model (Running a bit ahead)

Large autocorrelation time and large fluctuations near the phase transition

Practical implementation

- Keeping the whole sequence $\left\{X_{n}, \ldots, X_{0}\right\}$ in memory is not practical (size of X can be quite large)
- Use the sparseness of $A(X \mid Y)$, remember the sequence of transitions $X_{n} \rightarrow X_{n+1}$
- Every transition is a summand in a symbolic representation of SD equations
- Every transition is a "drawing" of some element of diagrammatic expansion (either weak- or strong-coupling one)

Save:

- current diagram
- history of drawing

Need DO and UNDO operations for every diagram element

Construction of algorithms is almost automatic and can be nicely combined with symbolic calculus software (e.g. Mathematica)

Sign problem and reweighting

- Now lift the assumptions $A(X \mid Y)>0, b(X)>0$
- Use the absolute value of weight for the Metropolis sampling

$$
w\left(X_{n}, \ldots, X_{0}\right)=\mathcal{N}_{w}^{-1}\left|A\left(X_{n} \mid X_{n-1}\right)\right| \ldots\left|A\left(X_{1} \mid X_{0}\right)\right|\left|b\left(X_{0}\right)\right|
$$

- Sign of each configuration:
$S\left(X_{n}, \ldots, X_{0}\right)=\operatorname{sign} A\left(X_{n} \mid X_{n-1}\right) \ldots \operatorname{sign} A\left(X_{1} \mid X_{0}\right) \operatorname{sign} b\left(X_{0}\right)$
- Define $\tilde{A}(X \mid Y)=|A(X \mid Y)| \tilde{b}(X)=\mid b(X)$
- Effectively, we solve the system $\tilde{\phi}=\tilde{A} \tilde{\phi}+\tilde{b}$
- $\begin{aligned} & \text { The expansion } \\ & \text { convergence }\end{aligned} \tilde{\phi}=\sum \tilde{A}^{m} \tilde{b}$ has smaller radius of
- Reweighting fails if the system $\tilde{\phi}=\tilde{A} \tilde{\phi}+\tilde{b}$ approaches the critical point (one of eigenvalues approach 1)

One can only be saved by a suitable reformulation of equations which makes the sign problem milder

Resummation/Rescaling

Growth of field correlators $\left\langle\phi\left(x_{n}\right) \ldots \phi\left(x_{0}\right)\right\rangle$ with \mathbf{n} / order:

- Exponential in the large-N limit
- Factorial at finite $\mathbf{N}, \boldsymbol{\phi}=\mathbf{A} \boldsymbol{\phi}+\mathbf{b}$ has no perturbative solution How to interprete $\left\langle\phi\left(x_{n}\right) \ldots \phi\left(x_{0}\right)\right\rangle$ as a probability distribution?

Large N limit
Exponential growth? Introduce "renormalization constants" :

$$
\left\langle\phi\left(x_{n}\right) \ldots \phi\left(x_{0}\right)\right\rangle=\mathcal{N} c^{n} w\left(x_{n}, \ldots, x_{0}\right)
$$

$\sum_{n=1}^{+\infty} \sum_{x_{n} \ldots x_{0}} w\left(x_{n}, \ldots, x_{0}\right)$
is now finite,
can be interpreted as probability

In the Metropolis algorithm: all the transition weights should be finite, otherwise unstable behavior How to deal with factorial growth? \quad Borel resummation

Borel resummation

- Probability of "split" action grows as

$$
\sum_{A=1}^{m} \sum_{a=1}^{n_{A}+1}\left(n_{A}+2-a\right)
$$

Obviously, cannot be removed by rescaling of the form $\boldsymbol{N} \mathbf{C l}^{\boldsymbol{n}}$
Introduce rescaling factors which depend on

number of vertices OR genus

$G\left(n_{1}, \ldots, n_{m}\right)=\sum_{g=0}^{+\infty} \frac{1}{N^{2 g}} G_{g}\left(n_{1}, \ldots, n_{m}\right)$
$G_{g}\left(n_{1}, \ldots, n_{m}\right)=f(g, n, m) w_{g}\left(n_{1}, \ldots, n_{m}\right)$
$\frac{f(g, n, m)=f_{g} \mathcal{N}_{g}^{m} c_{g}^{n} \quad f_{g} \sim \Gamma(2 \nu g), \nu>1}{c_{g}} \frac{c_{g}}{c_{g+1}}=\left(1+\frac{A}{g^{\nu}}\right)^{-1}$

Genus expansion: ϕ^{4} matrix model

Genus expansion: ϕ^{4} matrix model

Lessons from SU(N) sigma-model

Nontrivial plavground similar to QCD!!!

Action:

Observables:

$$
\mathcal{Z}=\int_{S U(N)} \mathcal{D} g_{x} \exp \left(-\frac{N}{\lambda} \sum_{x, y} D_{x y} \operatorname{tr} g_{x} g_{y}^{\dagger}\right.
$$

Schwinger-Dyson equations:

$\quad \mathcal{G}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\sum_{A=2}^{n-1} \delta_{x_{1}, y_{A}} \mathcal{G}\left(x_{A}, y_{1}, \ldots, x_{A-1}, y_{A-1}\right) \mathcal{G}\left(x_{A+1}, y_{A+1}, \ldots, x_{n}, y_{n}\right)+$
+
$\delta_{x_{1}, y_{1}} \mathcal{G}\left(x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)+\delta_{x_{1}, y_{n}} \mathcal{G}\left(x_{n}, y_{1}, \ldots, x_{n-1}, y_{n-1}\right)-$
$-\sum_{A=2}^{n} \delta_{x_{1}, x_{A}} \mathcal{G}\left(x_{1}, y_{1}, \ldots, x_{A-1}, y_{A-1}\right) \mathcal{G}\left(x_{A}, y_{A}, \ldots, x_{n}, y_{n}\right)-$
$-\frac{1}{\lambda} D_{x_{1} x} \mathcal{G}\left(x, y_{1}, \ldots, x_{n}, y_{n}\right)+\frac{1}{\lambda} D_{x_{1} x} \mathcal{G}\left(x_{1}, x, x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$

Stochastic solution naturally leads to strong-coupling series! Alternating sign already @ leading order

Lessons from SU(N) sigma-model

SD equations in momentum space:

$$
\begin{array}{r}
\mathcal{G}\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)=\frac{1}{V^{2 n}} \sum_{x_{1}, y_{1}} \ldots \sum_{x_{n}, y_{n}} \\
\exp \left(i \sum_{A} p_{A} x_{A}+i \sum_{A} q_{A} y_{A}\right) \mathcal{G}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \\
\mathcal{G}_{0}(p)=(\lambda+D(p))^{-1}
\end{array}
$$

$$
\mathcal{G}_{\left(p_{1}, q_{1}\right)}=\lambda \frac{\left.\mathcal{g}_{0}\left(p_{1}\right)\right)\left(\tilde{p}_{1}+q_{1}\right)}{V}+\mathcal{G}_{0}\left(p_{1}\right) \sum_{\tilde{p}_{1} \tilde{q}_{1}, \tilde{p}_{2}} \delta\left(p_{1}, \tilde{p}_{1}+\tilde{q}_{1}+\tilde{p}_{2}\right) D\left(\tilde{q}_{1}\right) \mathcal{G}\left(\tilde{p}_{1}, \tilde{q}_{1}, \tilde{p}_{2}, q_{1}\right)
$$

$$
\mathcal{G}\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)=
$$

$$
=\sum_{A=2}^{n-1} \lambda \frac{\mathcal{G}_{0}\left(p_{1}\right) \delta\left(p_{1}+q_{A}\right)}{V} \mathcal{G}\left(p_{A}, q_{1}, \ldots, p_{A-1}, q_{A-1}\right) \mathcal{G}\left(p_{A+1}, q_{A+1}, \ldots, p_{n}, q_{n}\right)+
$$

$$
+\lambda \frac{\mathcal{G}_{0}\left(p_{1}\right) \delta\left(p_{1}+q_{1}\right)}{V} \mathcal{G}\left(p_{2}, q_{2}, \ldots, p_{n}, q_{n}\right)+
$$

$$
+\lambda \frac{\mathcal{G}_{0}\left(p_{1}\right) \delta\left(p_{1}+q_{n}\right)}{V} \mathcal{G}\left(p_{n}, q_{1}, p_{2}, q_{2}, \ldots, p_{n-1}, q_{n-1}\right)-
$$

$$
-\lambda \frac{\mathcal{G}_{0}\left(p_{1}\right)}{V} \sum_{A=2}^{n} \sum_{\tilde{p}_{1} \tilde{p}_{A}} \delta\left(p_{1}+p_{A}, \tilde{p}_{1}+\tilde{p}_{A}\right) \mathcal{G}\left(\tilde{p}_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{A-1}, q_{A-1}\right) \mathcal{G}\left(\tilde{p}_{A}, q_{A}, \ldots, p_{n}, q_{n}\right)+
$$

$$
+\mathcal{G}_{0}\left(p_{1}\right) \sum_{\tilde{p}_{1}, \tilde{q}_{1}, \tilde{p_{2}}} \delta\left(p_{1}, \tilde{p}_{1}+\tilde{q}_{1}+\tilde{p}_{2}\right) D\left(\tilde{q}_{1}\right) \mathcal{G}\left(\tilde{p}_{1}, \tilde{q}_{1}, \tilde{p}_{2}, q_{1}, p_{2}, q_{2}, \ldots, p_{n}, q_{n}\right)
$$ $<1 / N \operatorname{tr} g^{+}{ }_{x} g_{v}>$ us λ

Lessons from SU(N) sigma-model Matrix Lagrange Multiplier

$$
\begin{aligned}
& \quad \mathcal{Z}=\int d g_{x} \int d \xi_{x} \exp \left(-\frac{N}{\lambda} \sum_{x \neq y} D_{x y} \operatorname{tr}\left(g_{x}^{\dagger} g_{y}\right)-\frac{i N}{\lambda} \sum_{x} \operatorname{tr}\left(\xi_{x} g_{x}^{\dagger} g_{x}-\xi_{x}\right)\right)= \\
& =\int d \xi_{x} \exp \left(N \operatorname{tr} \ln \left(D_{x y}+i \xi_{x} \delta_{x y}\right)+\frac{i N}{\lambda} \sum_{x} \operatorname{tr} \xi_{x}\right) \\
& \hline \hline G_{x y}=\left(D_{x y}+i \xi_{x} \delta_{x y}\right)^{-1} m^{2} \equiv \lambda+2 D\left(1-\left\langle\operatorname{tr} g_{x}^{\dagger} g_{x+\hat{0}}\right\rangle\right) \\
& \text { Nonperturbative improvementl! [Vicari, Rossij,ooo] }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle G_{p_{1} q_{1}} \ldots G_{p_{n} q_{n}}\right\rangle=\frac{1}{V} \mathcal{G}\left(p_{1}\right) \delta\left(p_{1}+q_{1}\right)\left\langle G_{p_{2} q_{2}} \ldots G_{p_{n} q_{n}}\right\rangle+ \\
& +\frac{\lambda}{V} \mathcal{G}\left(p_{1}\right) \sum_{A=2}^{n} \sum_{\tilde{p}_{1}, \tilde{p}_{A}} \delta\left(p_{1}+p_{A}-\tilde{p}_{1}-\tilde{p}_{A}\right)\left\langle G_{\tilde{p}_{1} q_{1}} \ldots G_{p_{A-1} q_{A-1}}\right\rangle\left\langle G_{\tilde{p}_{A} q_{A}} \ldots G_{p_{n} q_{n}}\right\rangle- \\
& -\lambda \mathcal{G}\left(p_{1}\right) \sum_{A=2}^{n} \sum_{\tilde{p}_{1} q_{A} \tilde{p}_{A}} \delta\left(p_{1}-\tilde{p}_{1}-\tilde{q}_{A}-\tilde{p}_{A}\right) K^{2}\left(\tilde{q}_{A}\right)\left\langle G_{\tilde{p}_{1} q_{1}} \ldots G_{p_{A} \tilde{q}_{A}}\right\rangle\left\langle G_{\tilde{p}_{A} q_{A}} \ldots G_{p_{n} q_{n}}\right\rangle+ \\
& +\lambda \mathcal{G}\left(p_{1}\right) \sum_{\tilde{p}_{1}, \tilde{\tilde{2}}_{2}, \tilde{q}_{1}} \delta\left(p_{1}-\tilde{p}_{1}-\tilde{p}_{2}-\tilde{q}_{1}\right) K^{2}\left(\tilde{q}_{1}\right)\left\langle G_{\tilde{p}_{1} \tilde{q}_{1}} G_{\tilde{p}_{2} q_{1}} G_{p_{2} q_{2}} \ldots G_{p_{n} q_{n}}\right\rangle
\end{aligned}
$$

But: A in $\Phi=A \Phi+b$ has unit eigenvalue...

Large-N gauge theory, Verseziario limit

$-\beta \underset{\square}{\square}-\beta \square+D_{\square}$

$$
\square=\square+k \square+k \square+k \square
$$

MIIgcal-Makeenko loop equations illustrated

Temperature assd chersical potenitial

- Finite temperature: strings on cylinder $\mathrm{R} \sim 1 / T$
- Winding strings = Polyakov loops \sim quark free energy
- No way to create winding string in pure gauge theory at large-N \longrightarrow EK reduction
- Veneziano limit: open strings wrap and close - Chemical potential:

$$
\text { к } \rightarrow \text { к } \exp (+/-\mu)
$$

- Strings oriented in the time direction

Phase diagram of the theory: a sketch

High temperature

 (small cylinder radius) ORLarge chemical potential

Numerous winding strings

Nonzero Polyakov loop

Deconfinement phase

Conclusions

- Schwinger-Dyson equations provide a convenient framework for constructing DiagMC algorithms
- $1 / \mathrm{N}$ expansion is quite natural (other algorithms cannot do it AUTOMATICALLY)
- Good news: it is easy to construct DiagMC algorithms for non-Abelian field theories
Then, chemical potential does not introduce additional sign problem

Bad news: sign problem already for higher-order terms of SC expansions

Can be cured to some extent by choosing proper observables (e.g. momentum space)

