Thermal modifications of mesons and restoration of broken symmetries from spatial correlation functions in HISQ

Yu Maezawa (YITP, Kyoto University)

in collaboration with

Frithjof Karsch (Universität Bielefeld, Brookhaven National Lab.)
Swagato Mukherjee (Brookhaven National Lab.)
Peter Petreczky (Brookhaven National Lab.)
Introduction

Thermal fluctuation in QCD

Modifications of hadrons
- sequential melting pattern of quarkonium and open-flavor mesons
 e.g. J/ψ suppression
 Matsui and Satz (1986)

Restorations of broken symmetries
- restored pattern of chiral and $U_A(1)$ symmetries
 Pisarski and Wilczek (1984)

Theoretical understanding in lattice QCD simulations from spatial correlation functions

Previous: strange-charm PRD91 (2015) 5, 054503
This work: including up/down at widely T range
Hadronic excitation on Lattice

Temporal correlation function:

\[G^T(\tau, T) = \int d^3x \langle \hat{J}_H^+(0, 0) J_H(\tau, x) \rangle \xrightarrow{\tau \to \infty} Ae^{-m_0 \tau} \]

...difficult due to the limitation \(\tau < 1/T \)

Spatial correlation function:

\[G^S(z, T) = \int_{0}^{1/T} d\tau \int dx dy \langle \hat{J}_H^+(0, 0) J_H(\tau, x) \rangle \xrightarrow{z \to \infty} Ae^{-M(T)z} \]

No limitation to spatial direction: more sensitive to in-medium modification

\(M(T) \): screening mass
Hadronic excitation on Lattice

Temporal correlation function:

\[G^T(\tau, T) = \int d^3x \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{\tau \to \infty} A e^{-m_0 \tau} \]

...difficult due to the limitation \(\tau < 1/T \)

Spatial correlation function:

\[G^S(z, T) = \int_0^{1/T} d\tau \int dx dy \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{z \to \infty} A e^{-M(T)z} \]

\(M(T) \): screening mass

No limitation to spatial direction: more sensitive to in-medium modification

Spectral function

\[G^T(\tau, T) = \int_0^\infty d\omega \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} \sigma(\omega, T) \]

\[G^S(z, T) = \int_0^\infty \frac{2d\omega}{\omega} \int_0^\infty dp_z e^{ip_z z} \sigma(\omega, p_z, T) \]

No \(T \) dependence in Kernel: direct probe of thermal modification of \(\sigma \)

\[G^S(z, T)/G^S(z, T = 0) \]
Hadronic excitation on Lattice

Parity partner of meson states

Vector (vector and axial-vector)

\[\bar{\psi} \gamma_i \psi \]
\[\bar{\psi} \gamma_4 \psi \]

\[1^+ \]
\[1^- \]

\[M_V(T) \]

Chiral

Scalar (pseudo-scalar and scalar)

\[\bar{\psi} \gamma_5 \psi \]
\[\bar{\psi} \psi \]

\[0^+ \]
\[0^- \]

\[M_S(T) \]

\[U_A(1) \]

Degeneracy of parity partners: indicator of symmetry restorations
Hadronic excitation on Lattice

Parity partner of meson states

Vector (vector and axial-vector)

\[
\begin{align*}
\bar{\psi} \gamma_i \psi & \quad 1^+ \\
\bar{\psi} \gamma_4 \psi & \quad 1^- \\
\end{align*}
\]

Scalar (pseudo-scalar and scalar)

\[
\begin{align*}
\bar{\psi} \gamma_5 \psi & \quad 0^+ \\
\bar{\psi} \psi & \quad 0^- \\
\end{align*}
\]

Chiral \[\Rightarrow\] Degeneracy of parity partners: indicator of symmetry restorations

Behavior in limiting cases:

At low \(T\), **bound state**: \(M(T) \sim m_0\) pole mass at \(T=0\)

\[
\sigma(\omega, 0, 0, p_z, T) \sim \delta(\omega^2 - p_z^2 - m_0^2)
\]

At \(T \sim T_c\), **in-medium modification and/or dissolution**

degeneracy of parity partner states

At \(T \to \infty\), **free quark-antiquark pair**: \(M \to 2\sqrt{m_q^2 + (\pi T)^2}\)

with the lowest Matsubara frequency
Lattice simulations

- Setup in HISQ
- Modifications of Mesons
- Restorations of broken symmetries
Highly Improved Staggered Quark

Reduction of taste violation
Control of cutoff effects

Bazavov et al. '11, Hot-QCD '11, '14

Lattice parameters

- 2+1 flavor QCD
 (charm quenched)
- m_s: physical, $m_I/m_s = 1/20$
 ($m_{\pi} \sim 160$ MeV, $m_K \sim 504$ MeV)
- $N_\tau = 8$ ($T = 110—207$ MeV)
 10 ($T = 139—166$ MeV)
 12 ($T = 149—400$ MeV)
 keeping $N_s/N_\tau = 4$
- $32^4--48^3\times64$ at $T = 0$
- scale: f_k input
- calculating quark-line connected part of meson correlators

<table>
<thead>
<tr>
<th>Γ</th>
<th>J^P</th>
<th>$u\bar{d}$</th>
<th>$u\bar{s}$</th>
<th>$u\bar{c}$</th>
<th>$s\bar{s}$</th>
<th>$s\bar{c}$</th>
<th>$c\bar{c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_5</td>
<td>0$^-$</td>
<td>π</td>
<td>K</td>
<td>D</td>
<td>$(\eta_{s\bar{s}})$</td>
<td>D_s</td>
<td>η_c</td>
</tr>
<tr>
<td>1</td>
<td>0$^+$</td>
<td>K^*_0</td>
<td>D_0^*</td>
<td>$-$</td>
<td>D_{s0}^*</td>
<td>χ_{c0}</td>
<td></td>
</tr>
<tr>
<td>γ_i</td>
<td>1$^-$</td>
<td>ρ</td>
<td>K^*</td>
<td>D^*</td>
<td>ϕ</td>
<td>D_s^*</td>
<td>J/ψ</td>
</tr>
<tr>
<td>$\gamma_i\gamma_5$</td>
<td>1$^+$</td>
<td>K_1</td>
<td>D_1</td>
<td>$f_{1}(1420)$</td>
<td>D_{s1}</td>
<td>χ_{c1}</td>
<td></td>
</tr>
</tbody>
</table>
Reduction of taste violation
Control of cutoff effects

Bazavov et al. `11, Hot-QCD `11, `14

Lattice parameters
- 2+1 flavor QCD
 (charm quenched)
- \(m_s\): physical, \(m_f/m_s = 1/20\)

Mesons contents

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(J^P)</th>
<th>(u\bar{d})</th>
<th>(u\bar{s})</th>
<th>(u\bar{c})</th>
<th>(s\bar{s})</th>
<th>(s\bar{c})</th>
<th>(c\bar{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_5)</td>
<td>0(^-)</td>
<td>(\pi)</td>
<td>(K)</td>
<td>(D)</td>
<td>((\eta_{s\bar{s}}))</td>
<td>(D_s)</td>
<td>(\eta_c)</td>
</tr>
<tr>
<td>1</td>
<td>0(^+)</td>
<td>(K_0^*)</td>
<td>(D_0^*)</td>
<td>(D_{s0}^*)</td>
<td>(\chi_{c0})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>1(^-)</td>
<td>(\rho)</td>
<td>(K^*)</td>
<td>(D^*)</td>
<td>(\phi)</td>
<td>(D_s^*)</td>
<td>(J/\psi)</td>
</tr>
<tr>
<td>(\gamma_i\gamma_5)</td>
<td>1(^+)</td>
<td>(K_1)</td>
<td>(D_1)</td>
<td>(f_1(1420))</td>
<td>(D_{s1})</td>
<td>(\chi_{c1})</td>
<td></td>
</tr>
</tbody>
</table>

Meson spectra at \(T = 0\) (input: ★)

- \([\text{MeV}]\) ud
- \([\text{MeV}]\) u\(\bar{s}\)
- \([\text{MeV}]\) u\(\bar{c}\)
- \([\text{MeV}]\) s\(\bar{s}\)
- \([\text{MeV}]\) s\(\bar{c}\)
- \([\text{MeV}]\) c\(\bar{c}\)
Ratio of spatial correlation functions

Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \simeq 1 \text{ the same } \sigma \text{ at } T = 0, \text{ or } \neq 1 \text{ modified} \]

Pseudo-scalar $J^P = 0^-$

- $G^S(z, T)/G^S(z, 0) \simeq 1$ at short distance \(T_c = (154 \pm 9) \text{ MeV} \)
- $G^S(z, T)/G^S(z, 0) \neq 1$ at large distance physics: not sensitive to T
- $G^S(z, T)/G^S(z, 0) \neq 1$ at large distance thermal modification of σ
Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \simeq 1 \text{ the same } \sigma \text{ at } T = 0, \text{ or } \neq 1 \text{ modified} \]

Pseudo-scalar \(J^P = 0^- \)

\[T_c = (154 \pm 9) \text{ MeV} \]

- \(G^S(z, T)/G^S(z, 0) \simeq 1 \) at short distance \(\Rightarrow \) physics: not sensitive to \(T \)
- \(G^S(z, T)/G^S(z, 0) \neq 1 \) at large distance \(\Rightarrow \) thermal modification of \(\sigma \)
Probe of thermal modifications of spectral function

\[G^S(z, T)/G^S(z, T = 0) \simeq 1 \text{ the same } \sigma \text{ at } T = 0, \text{ or } \neq 1 \text{ modified} \]

Pseudo-scalar \(J^P = 0^- \)

\(G^S(z, T)/G^S(z, 0) \simeq 1 \text{ at short distance} \quad \Rightarrow \text{ physics: not sensitive to } T \)

\(G^S(z, T)/G^S(z, 0) \neq 1 \text{ at large distance} \quad \Rightarrow \text{ thermal modification of } \sigma \)

\(T_c = (154 \pm 9) \text{ MeV} \)
Ratio of spatial correlation functions

Probe of thermal modifications of spectral function

\[G^S(z, T)/G^S(z, T = 0) \approx 1 \] the same \(\sigma \) at \(T = 0 \), or \(\neq 1 \) modified

Pseudo-scalar \(J^P = 0^- \)

\[T_c = (154 \pm 9) \text{ MeV} \]

\(G^S(z, T) / G^S(z, 0) \approx 1 \) at short distance \(\rightarrow \) physics: not sensitive to \(T \)

\(G^S(z, T) / G^S(z, 0) \neq 1 \) at large distance \(\rightarrow \) thermal modification of \(\sigma \)

modification at \(T < T_c \), explicit flavor dependence at \(T > T_c \)
probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \simeq 1 \quad \text{the same } \sigma \text{ at } T = 0, \text{ or } \neq 1 \text{ modified} \]

Pseudo-scalar \(J^P = 0^- \)

\[\frac{G^S(z, T)}{G^S(z, 0)} = 1 \]

\[T_c = (154 \pm 9) \text{ MeV} \]

- \(G^S(z, T)/G^S(z, 0) \simeq 1 \) at short distance \(\rightarrow \) physics: not sensitive to \(T \)
- \(G^S(z, T)/G^S(z, 0) \neq 1 \) at large distance \(\rightarrow \) thermal modification of \(\sigma \)
- modification at \(T < T_c \), explicit flavor dependence at \(T > T_c \)
Mass difference

$\Delta M(T) = M(T) - m_0 \sim \text{change of “binding energy”}$

Pseudo-scalar $J^P = 0^-$

\bullet $u\bar{d}$, $u\bar{s}$, $u\bar{c}$: explicit thermal modification below T_c, similar modification pattern at $T < T_c$, explicit flavor dependence at $T > T_c$
Mass difference

\[\Delta M(T) = M(T) - m_0 \sim \text{change of “binding energy”} \]

Pseudo-scalar $J^P = 0^-$

- $u\bar{d}$, $u\bar{s}$, $u\bar{c}$: explicit thermal modification below T_c,
 similar modification pattern at $T < T_c$,
 explicit flavor dependence at $T > T_c$

- $s\bar{s}$, $s\bar{c}$: slight modification below T_c
- $c\bar{c}$: stable beyond T_c

PRD91 (2015) 5, 054503
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

$T = 139$ MeV = 0.90 T_c
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

$T = 149 \text{ MeV} = 0.97 \ T_c$
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

Vector partner degenerates at $T \sim 1.0T_c - 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \(\rightarrow\) restoration of chiral symmetry
Degeneracy of scalar partners \(\rightarrow\) (effective) restoration of \(U_A(1)\) symmetry

\[G^S(z, T) \]

\[T = 171 \text{ MeV} = 1.11 T_c \]

- Vector partner degenerates at \(T \approx 1.0 T_c \rightarrow 1.1 T_c \)
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c - 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners → restoration of chiral symmetry
Degeneracy of scalar partners → (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c -- 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

\[G^S (z, T) \]

- Vector partner degenerates at $T \sim 1.0T_c -- 1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c -- 1.6T_c$

T = 220 MeV = 1.43 T_c
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0 T_c \sim 1.1 T_c$
- Scalar partner degenerates at $T \sim 1.4 T_c \sim 1.6 T_c$
Restoration of broken symmetries

Large distance behavior of spatial correlator $G^S(z, T) \xrightarrow{z \to \infty} A e^{-M(T)z}$

Light-unflavored $u \bar{d}$

- Vector partner degenerates at $T \sim 1.0T_c$--$1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c$--$1.6T_c$

chiral: restored, $U_A(1)$: broken at T_c, no dependence on lattice spacing
Restoration of broken symmetries

Large distance behavior of spatial correlators

\[\langle S(z, T) \rangle \sim z \rightarrow \infty, A e^{-M(T)z} \]

Light-unflavored \(u \bar{u} \) Vector partner degenerates at \(T \sim 1.0 \sim 1.1 T_c \)

Scalar partner degenerates at \(T \sim 1.4 \sim 1.6 T_c \)

Chiral: restored, \(U_{A}(1) \): broken at \(T_c \), no dependence on lattice spacing.
Summary

In-medium mesons from spatial correlation function

- Sensitive to thermal effect at finite T on lattice
 - Direct probe of modification of meson spectral function
 - Indicator of restorations of broken symmetries

$(2+1)$-flavor QCD lattice simulations with HISQ of

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \text{, screening mass: } G^S(z, T) \xrightarrow{z \to \infty} A e^{-M(T)z} \]

- $u\bar{d}$, $u\bar{s}$, $u\bar{c}$: explicit thermal modification below T_c
 - similar modification pattern below T_c
 - explicit flavor dependence above T_c

- $s\bar{s}$, $s\bar{c}$: slight modification below T_c

- $c\bar{c}$: stable beyond T_c

Degeneracies of chiral partners

- chiral: restored, $U_A(1)$: broken at T_c
 - in continuum and physical quark mass (preliminary)

PRD91 (2015) 5, 054503
Backup slides
Including negative (non-oscillating) and positive (oscillating) parity states

\[G(z) = A_{NO}^2 e^{-M_-z} - (-1)^z A_O^2 e^{-M_+z} \]

Parameters: obtained by four successive data

\[g_i \equiv G(z + i) \text{ with } i = 0, 1, 2, 3 \]

Effective masses \(x_\pm \equiv e^{-M_\pm} \)

in quadratic equations:

\[Ax^2 + Bx + C = 0 \]

\[x_\pm = \pm \frac{B}{2A} + \frac{\sqrt{B^2 - 4AC}}{2|A|} \]

\[A = g_1^2 - g_2g_0, \quad B = g_3g_0 - g_2g_1, \quad C = g_2^2 - g_3g_1 \]

Then the effective correlators reconstructed:

\[G_{NO}(z) \equiv A_{NO}^2 \bar{g}(z) e^{-M_-z} = \frac{g_1 + g_0x_+}{x_- + x_+} \]

\[G_O(z) \equiv A_O^2 \bar{g}(z) e^{-M_+z} = (-1)^z \frac{g_1 - g_0x_-}{x_- + x_+} \]
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

Vector partner degenerates at $T \sim 1.0 T_c - 1.1 T_c$
Scalar partner degenerates at $T \sim 1.4 T_c - 1.6 T_c$
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c$--$1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c$--$1.6T_c$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c--1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c--1.6T_c$
- Spin dependence explicit at $T \sim 2.6T_c$

cf.) Thermal perturbation: no channel dependence

Laine et al. 2004