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Introduction

Flavor physics

Heavy quark physics are believed to hold the keys to BSM physics. Many
studies try to provide results for the heavy mesons’ properties. The
simulations involving heavy quarks are however difficult to perform
straigthforwardly.

HQET: an effective field theory for QCD

HQET provides an effective description of QCD processes with initial and
final states containing a single heavy quark.

high momentum components of the massive quark field are
integrated out; their contribution is summarized in the HQET
parameters,

low momentum components are present as a new two-component
effective field ψh,

out of which the explicit dependence on the quark mass is removed:
all the masses computed within HQET must be shifted by mbare ,
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Introduction

HQET: an effective field theory for QCD

the leading contribution of HQET is described by the static quark
theory, which assumes that the heavy quark is infinitely heavy

Lstat = ψ̄hD0ψh

ψ̄hD0ψh has the same quantum numbers as the mass operator
δmψ̄hψh, dimensional analysis shows that δm ∼ 1/a,

renormalization must be done non-perturbatively otherwise
uncancelled divergent terms can combine with lattice artefacts
giving finite, non-vanishing contributions

available solution: renormalize HQET and match it to QCD in a
small volume and evolve the parameters non-perturbatively (step
scaling) to the large volume using SF boundary conditions,

possible alternative: this talk.
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Method

The primary object of interest is the correlator of two heavy-light
currents:

CΓ(t) = 〈ψ̄h(t)Γψ(t)ψ̄(0)Γψh(0)〉

Static Lagrangian

We use the large distance behavior of CΓ(t) to subtract the linear
divergence non-perturbatively by fitting and subtracting the slope:

CΓ(t)→ embare tCΓ(t), mbare ∼
1

a
+ finite part

Heavy-light currents

We use the short distance bahavior of CΓ(t) to define renormalization
constants of heavy-light currents:(

ZX
Γ (t0)

)2
CΓ(t0) = C lattice tree-level

Γ (t0)

Piotr Korcyl Non-perturbative renormalization of the static quark theory 4/ 14



Feasibility study

Ensemble

RBC’s 163 × 32 lattice ensemble with mπ ≈ 420 MeV, Iwasaki gauge
action and domain wall light fermions, a = 0.11fm = 1.73GeV−1

Details

the test study was done using 20 configurations separated by 200
MDU

stochastic wall source, one per configuration → we observed
improvement of precision of the correlator at small distances

two additional masses were measured → am = 0.005, 0.01, 0.02,
naive chiral extrapolation for the renormalization constants
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Preliminary results

Z stat
A /Z stat

V as a check of precision

In the ratio

R(t0/a, am) = Z stat
A (t0/a, am)/Z stat

V (t0/a, am)

the factor with mbare cancels and the ratio can be evaluated without
additional renormalization conditions.
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Preliminary results

Z stat
A /Z stat

V as a check of precision

Combined, correlated fit was performed using the ansatz

R(t0/a, am) = R + α/(t0/a)2 + β(t0/a)2 + γam

→ the discretization errors accounted in the fit ansatz turned out to be
very small.

R α β γ

E-H 0.9875(9)(97) 0.0041(7)(422) -0.0030(2)(5) -0.79(4)(40)
HYP1 0.9995(14)(96) -0.0033(12)(50) -0.0057(2)(3) -1.16(9)(37)
HYP2 1.0013(27)(38) -0.0075(32)(40) -0.0076(3)(2) -0.92(12)(10)

→ first error is statistical, second systematic
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Preliminary results

Z stat
A /Z stat

V as a check of precision
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Preliminary results

Mass renormalization
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We renormalize the heavy mass by setting the local slope to 0:

δm(t∗) ∼ − log
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Preliminary results

Z stat
A and Z stat

V in position space scheme
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HYP1,

in the chiral limit,

mass renormalization condition at m=0.005,

different colors correspond to different t∗.
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Preliminary results

Z stat
A and Z stat

V in position space scheme
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→ estimated size of discretization errors ∼ 0.005
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Preliminary results

Z stat
A and Z stat

V in MS scheme at 3 Gev

We use a one-loop convertion factor between continuum HQET position
space scheme and continuum HQET MS scheme and two-loop running.
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Preliminary results

Z stat
A and Z stat

V in MS scheme at 3 Gev

We use a one-loop convertion factor between continuum HQET position
space scheme and continuum HQET MS scheme.

scale [GeV] αs Z stat ,MS
A0

(3GeV ) Z stat ,MS ,RGI
A0

5.44 0.1967 0.956(15) 0.712(10)
2.72 0.2563 0.822(26) 0.613(19)
1.81 0.3166 0.698(35) 0.520(27)
1.36 0.3864 0.575(40) 0.428(32)

Table: Numerical values of renormalization constants in MS .
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Discussion and conclusions

The main ingredients of our proposal are

position space renormalization condition

reduction of cut-off effects through a tree-level improvement

stochastic wall source

It’s main advantages are

gauge invariance

on-shell

no need to compute field renormalization constants

Possible issues

usual window problem → finer lattices, step scaling

Next steps

full RI-MOM study

four-fermion operators
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