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Introduction

I Polyakov loop UV divergent→ needs renormalization.

I Use gradient flow as a direct method of renormalization.

I We use HotQCD HISQ Nf = 2+1 ensembles with Mπ = 160 MeV on
243×6, 323×8, 403×10 and 483×12 lattices.

I Large temperature range from T = 100 up to T = 1000 MeV.

I Higher representations accessible with small errors.

I Can be used as check of large-N models/weak coupling.
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Fundamental Polyakov loop

I In the continuum: Local Polyakov loop at a spatial point x defined as
the trace of the path-ordered exponential

L(x) = TrP exp
(

i
∫ 1/T

0
A4(x , t)dt

)
,

with t the euclidean time.

I On the lattice:

L3(x) = Tr
Nt

∏
t=1

U4(x , t) ,

with U4(x , t) ∈ SU(3).

Expectation value:

〈|P3|〉=
1
V

〈∣∣∣∣∑
x

L3(x)
∣∣∣∣〉= Ce−F3/T .
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Polyakov loop renormalization

I Multiplicative renormalization of the Polyakov loop:

Pren
N (T ) = (ZN(T ))lPN(T ) ,

which depends on the coupling and the length of the contour l.

I On the lattice this is done as

Pren
N (T ) = e−c(a)Nt PN(T ) ,

with some lattice spacing dependent constant c which has to be
determined (e.g., use static potential at a certain distance O. Kaczmarek,

et.al., Phys. Lett. B 543 (2002) 41, [arXiv:hep-lat/0207002]).

I For the free energy F =−T lnPN this is a lattice spacing dependent shift.
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Gradient flow

Gradient flow (or “Wilson flow” with Wilson gauge action):
M. Lüscher, JHEP 1008 (2010) 071, [arXiv:1006.4518 [hep-lat]]

V̇t (x ,µ) =−g2
0(∂x ,µ S(Vt ))Vt ,

with
Vt (x ,µ)|t=0 = U(x ,µ) .

U(x ,µ) are our usual SU(3) link matrices and t is new index for the flow time.

Here we use Symanzik flow, i.e., Symanzik gauge action for S(Vt ). See also
Z. Fodor, et.al., (2014), arXiv:1406.0827 [hep-lat].

The flow equation is solved by a RK like scheme up to the desired value of t .
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Renormalization procedure

I Evolution of the flow up to a certain value of the flow f =
√

8t in
physical units (fm) (t has dimension a2).

I Choice corresponds to a certain renormalization scale.

I Different renormalization scales are related by a constant shift in the free
energy (if cut-off effects under control).

I Casimir scaling: Different representations can be related to each other.
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Higher representations

I From group theory one can derive the Polyakov loop in various
representations. See, e.g., S. Gupta, et.al., Phys.Rev. D77 (2008) 034503,

[arXiv:0711.2251 [hep-lat]].

I Relations make it easy to calculate P for arbitrary representations.

I We calculate it for sextet, adjoint, decuplet, ... up to 27-plet
(in total 8 representations).

I The direct renormalization with gradient flow makes it easy to extract the
free energy for higher representations at low T (T ≈ 120 MeV).
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Renormalized Polyakov loop - 1
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Note: We switch flow time at T = 200 MeV.
After continuum extrapolation: Match by constant shift of free energy.
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Renormalized Polyakov loop - 2
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Note: We switch flow time at T = 200 MeV.
After continuum extrapolation: Match by constant shift of free energy.
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Casimir scaling - 1

I Casimir scaling:
(P3)

1/d3 = (P6)
1/d6 = ... ,

with dN = C2(N)/C2(3), the ratio of the quadratic Casimirs of the
fundamental and N-representation.

I This means: (PN)
1/dN independent of the representation N.

I Shown to hold in perturbation theory at least up to O(g4)
Y. Schröder, Phys. Lett. B447 (1999) 321, [arxiv:hep-ph/9812205].

I Has been tested on the lattice, e.g.,
S. Gupta, et.al., Phys.Rev. D77 (2008) 034503, [arXiv:0711.2251 [hep-lat]].

I Note: If Casimir scaling holds, we can relate the renormalization
constants c(a) from different representation with each other.
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Casimir scaling - 2
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Measure for the Casimir scaling violation:

δN = P1/dN
N /P3−1

Note: Large error bars, but clear trend visible.
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Free energy of a static quark - 1

0

100

200

300

400

100 200 300 400 500 600 700 800 T [MeV]

〈F3〉 Nt = 6
Nt = 8

Nt = 10
Nt = 12

0

100

200

300

400

100 200 300 400 500 600 700 800 T [MeV]

〈F8〉

Note: Casimir scaled

Nt = 6
Nt = 8

Nt = 10
Nt = 12

Recall the relation of the Polyakov loop to the “free energy”:

PN = Ce−FN/T
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Free energy of a static quark - 2
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Recall the relation of the Polyakov loop to the “free energy”:

PN = Ce−FN/T
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Conclusion:

I Direct way of renormalizing the Polyakov loop.

I Renormalization scale is set by the flow time t (in fm).

I Polyakov loop “easy target” for a test of that kind of renormalization.

I Comparison with usual renormalization procedures straightforward.

Outlook:

I Continuum extrapolation.

I Comparison with other renormalization procedures and model
calculations.

I Look into other quantities:
Gluon condensate, topological susceptibility, ... .
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