Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho_{a_0,a_1}$ 

Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Lattice Higgs Collaboration (L<sub>at</sub>HC): Zoltán Fodor<sup>\$</sup>, Kieran Holland<sup>\*</sup>, Julius Kuti<sup>†</sup>, Santanu Mondal<sup>-</sup>, Dániel Nógrádi<sup>-</sup>, Chik Him Wong<sup>\$</sup>

+: University of California, San Diego \*: University of the Pacific \$: University of Wuppertal -: Eötvös University

LATTICE 2015

#### Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N
- Summary
- Conclusion

## Outline

- Review: Sextet model as Composite Higgs candidate
- Hadron Spectroscopy on Extended Dataset
  - Simulation Details
  - Higgs Impostor: Light  $M_{f_0}$
  - LHC reachable resonances :  $M_{a_0}, M_{\rho}, M_{a_1}$
  - Lightest Baryon: M<sub>N</sub>
- Conclusion

hik Him (Ricky Wong

Outline

#### Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground stat as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Predicts any observed new resonances

e.g.  $\sim3-\sigma$  diboson excess at  $\sim2$  TeV is recently reported by ATLAS as a walking techni- $\rho$  candidate (Fukano et al. arXiv:1506.03751v3), and CMS seems to echo



(\*plots taken from Jester's blog in Resonaances http://www.resonaances.blogspot.hu/2015/06/on-lhc-diboson-excess.html)

- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$
- Focus of this talk:  $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model

Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground stat as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Summary

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining
   ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology

Predicts any observed new resonances

e.g.  $\sim3-\sigma$  diboson excess at  $\sim2$  TeV is recently reported by ATLAS as a walking techni- $\rho$  candidate (Fukano et al. arXiv:1506.03751v3), and CMS seems to echo



(\*plots taken from Jester's blog in Resonaances http://www.resonaances.blogspot.hu/2015/06/on-lhc-diboson-excess.html)

- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$
- Focus of this talk:  $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model

Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N

Canalusian

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining
   ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Predicts any observed new resonances

e.g.  $\sim 3 - \sigma$  diboson excess at  $\sim 2$  TeV is recently reported by ATLAS as a walking techni- $\rho$  candidate (Fukano et al. arXiv:1506.03751v3), and CMS seems to echo



(\*plots taken from Jester's blog in Resonaances.http://www.resonaances.blogspot.hu/2015/06/on-lhc-diboson-excess.html)

- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$
- Focus of this talk:  $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model

Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>,*a*<sub>1</sub> Lightest Baryon N

Canalusian

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining
   ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Predicts any observed new resonances

e.g.  $\sim 3 - \sigma$  diboson excess at  $\sim 2$  TeV is recently reported by ATLAS as a walking techni- $\rho$  candidate (Fukano et al. arXiv:1506.03751v3), and CMS seems to echo



(\*plots taken from Jester's blog in Resonaances.http://www.resonaances.blogspot.hu/2015/06/on-lhc-diboson-excess.html)

- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$
- Focus of this talk:  $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model

Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N

Canalusian

## **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining
   ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Predicts any observed new resonances

e.g.  $\sim 3 - \sigma$  diboson excess at  $\sim 2$  TeV is recently reported by ATLAS as a walking techni- $\rho$  candidate (Fukano et al. arXiv:1506.03751v3), and CMS seems to echo



(\*plots taken from Jester's blog in Resonaances.http://www.resonaances.blogspot.hu/2015/06/on-lhc-diboson-excess.html)

- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$
- Focus of this talk:  $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model

Wong

Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- as Higgs Impostor
- LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

# Review:

### Sextet model as Composite Higgs candidate

#### • $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model

- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, Pos (LATTICE 2013) 089)
  - Step // function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground stat as Higgs Impostor
- LHC-Reachable Resonance Candidate: *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

# Review:

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089) Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step // function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al. arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

## **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step  $\beta$  function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step  $\beta$  function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step  $\beta$  function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor f
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0<sup>++</sup> ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor  $f_0$
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0++ ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor  $f_0$
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0++ ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor  $f_0$
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

#### Outline

#### Review

Hadron Spectroscopy

- Simulation Details
- Light 0++ ground state as Higgs Impostor
- LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N
- Summary

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB (Julius' talk gave an overview 16:30)
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Step β function : No sign of IRFP zero observed (details in Daniel Nogradi's talk 17:30) (Fodor et al, arXiv:1506.06599)
- New tools were developed to obtain the Dirac spectrum ( details in Kieran Holland's poster)
- Hadron Spectroscopy: We look for
  - Light Higgs impostor  $f_0$
  - LHC-reachable resonance candidates  $\rho$ ,  $a_0, a_1$
  - Lightest Baryon N

Wong

Outline

#### Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Barvon N

Summary

Conclusion

### Review: Sextet model as Composite Higgs candidate

#### Previously... (Fodor et al, PoS (LATTICE 2014) 244)



• Patterns emerged:

- Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
- $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
- N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

#### Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

#### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho_{,a_0,a_1}$ 

Summary

Conclusion

#### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Summary

Conclusion

### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Barvon N

Summary

Conclusion

### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Barvon N

Summary

Conclusion

### Review: Sextet model as Composite Higgs candidate



- Patterns emerged:
  - Light  $0^{++}$  ( $f_0$ ) as Higgs Impostor
  - $\rho$ ,  $a_0$  and  $a_1$  are within LHC's reach
  - N was first obtained
- Systematics have to be dealt with more carefully
- This talk is the report of preliminary results from an ongoing follow-up study with extended data

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20, 3.25$  and 3.30, which is in the weak coupling regime
- Lattices available: (  $\sim 2000 9000$  Trajectories each)

|  |    |    | m             |    |    |               |
|--|----|----|---------------|----|----|---------------|
|  |    |    |               |    |    |               |
|  |    |    |               |    |    |               |
|  |    |    |               |    |    |               |
|  | 32 | 64 | 0.003 - 0.008 |    |    |               |
|  | 28 | 56 | 0.003 - 0.008 | 32 | 64 | 0.004 - 0.008 |
|  | 24 | 48 | 0.003 - 0.014 | 28 | 56 | 0.003 - 0.008 |
|  |    |    |               | 24 | 48 | 0.003 - 0.008 |
|  |    |    |               |    |    |               |
|  | 32 | 64 | 0.005 - 0.010 |    |    |               |

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
  - $\beta \equiv 6/g^2 = 3.20, 3.25$  and 3.30, which is in the weak coupling regime

#### • Lattices available:( $\sim 2000 - 9000$ Trajectories each)

|  |    |    |               |    |    | т             |
|--|----|----|---------------|----|----|---------------|
|  |    |    |               |    |    |               |
|  |    |    |               |    |    |               |
|  |    |    |               |    |    |               |
|  | 32 | 64 | 0.003 - 0.008 |    |    |               |
|  | 28 | 56 | 0.003 - 0.008 | 32 | 64 | 0.004 - 0.008 |
|  | 24 | 48 | 0.003 - 0.014 | 28 | 56 | 0.003 - 0.008 |
|  |    |    |               | 24 | 48 | 0.003 - 0.008 |
|  |    |    |               |    |    |               |
|  |    |    |               |    |    |               |

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub>

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20, 3.25$  and 3.30, which is in the weak coupling regime

#### • Lattices available: ( $\sim 2000 - 9000$ Trajectories each)

| <u> </u> |    | 1  | Ш             | P |    | 1  | т             |
|----------|----|----|---------------|---|----|----|---------------|
|          |    |    |               |   |    |    |               |
|          |    |    |               |   |    |    |               |
|          |    |    |               |   |    |    |               |
|          | 32 | 64 | 0.003 - 0.008 |   |    |    |               |
|          | 28 | 56 | 0.003 - 0.008 |   | 32 | 64 | 0.004 - 0.008 |
|          | 24 | 48 | 0.003 - 0.014 |   | 28 | 56 | 0.003 - 0.008 |
| 3.30     |    |    |               |   | 24 | 48 | 0.003 - 0.008 |
|          |    |    |               |   |    |    |               |
|          | 32 | 64 | 0.005 - 0.010 |   |    |    |               |

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p*.*a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

### Hadron Spectroscopy on Extended Dataset -Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20, 3.25$  and 3.30, which is in the weak coupling regime
- Lattices available: (  $\sim 2000 9000$  Trajectories each)

| þ    |    | Γ  | т             | þ    | L  | I  | m             |
|------|----|----|---------------|------|----|----|---------------|
| 3.20 | 56 | 96 | 0.001 - 0.002 | 3.25 | 64 | 96 | 0.001         |
|      | 48 | 96 | 0.001 - 0.004 |      | 56 | 96 | 0.001 - 0.002 |
|      | 40 | 80 | 0.002 - 0.004 |      | 48 | 96 | 0.001 - 0.004 |
|      | 32 | 64 | 0.003 - 0.008 |      | 40 | 80 | 0.002 - 0.004 |
|      | 28 | 56 | 0.003 - 0.008 |      | 32 | 64 | 0.004 - 0.008 |
|      | 24 | 48 | 0.003 - 0.014 |      | 28 | 56 | 0.003 - 0.008 |
| 3.30 | 64 | 96 | 0.001         |      | 24 | 48 | 0.003 - 0.008 |
|      | 56 | 96 | 0.001 - 0.002 |      |    |    |               |
|      | 32 | 64 | 0.005 - 0.010 |      |    |    |               |

Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho_{a_0,a_1}$ 

Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Simulation Details

• Thermalization is monitored by *E* at Wilson or Symanzik flow time  $t_{\text{flow}} = 20$  with dt = 0.05

#### • Examples:



▲母▶▲言▶▲言▶ 言 めんぐ

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho_{a_0,a_1}$ 

Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Simulation Details

• Thermalization is monitored by *E* at Wilson or Symanzik flow time  $t_{\text{flow}} = 20$  with dt = 0.05

• Examples:



ロト 4 母 ト 4 至 ト 4 至 - りへで

Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Finite Size Scaling

#### Volume Dependence is mild



 Largest volume data available (56<sup>3</sup> × 96 or 64<sup>3</sup> × 96) are taken as infinite volume values

Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -Finite Size Scaling

#### Volume Dependence is mild



• Largest volume data available  $(56^3 \times 96 \text{ or } 64^3 \times 96)$  are taken as infinite volume values

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground stat as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

c.

Conclusion

# Hadron Spectroscopy on Extended Dataset - $M_{\pi}$

β=3.20 β=3.25 0.04 0.04 M\_2=2B m - M\_<sup>2</sup>=2B m 2B=6.200(29) 2B=5.369(18) 0.03 -X<sup>2</sup>/dof=2.39 0.03 - X<sup>2</sup>/dof=2.52 5° 50 'œ M<sup>2</sup>. ~ ž 0.02 0.02 0.01 0.0 0.002 0.004 0.002 m a m a

• Consistent with  $\chi$ PT

•  $M_{\pi}$ 

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground stat as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $M_{\pi}$



• Consistent with  $\chi$ PT

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate *p*,*a*<sub>0</sub>,*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation
  - $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate *p*,*a*<sub>0</sub>,*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation  $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate *p*,*a*<sub>0</sub>,*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation  $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate *p*,*a*<sub>0</sub>,*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation  $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho_{,a_0,a_1}$ Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation  $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

#### Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset - $F_{\pi}$

#### Scale setting becomes challenging



- $F_{\pi}$  at small fermion masses deviate from naive linear expectation  $\Rightarrow$  More complicated fit forms needed
- Improved fit forms should :
  - Include chiral-log effects
  - Take the corrections from the light scalar into account
- New analysis strategies are being developed ⇒ No chiral extrapolations will be attempted in this talk

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detai

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates **p.a<sub>0</sub>.a<sub>1</sub>** Lightest Baryon N Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Light f<sub>0</sub> as Higgs Impostor

#### • Fermionic operator $(f_0)$ is used

- Costly to compute the disconnected piece
  - $\Rightarrow$  Stochastic estimation with Dilution improvement is used
- Typically Noisy

 $\Rightarrow$  Improvements such as Variational Method, Boosted operators and Faster inverters are planned



Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detai

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates **p.a<sub>0</sub>.a<sub>1</sub>** Lightest Baryon N Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Light f<sub>0</sub> as Higgs Impostor

- Fermionic operator  $(f_0)$  is used
- Costly to compute the disconnected piece
  - $\Rightarrow$  Stochastic estimation with Dilution improvement is used
  - Typically Noisy

 $\Rightarrow$  Improvements such as Variational Method, Boosted operators and Faster inverters are planned



Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

#### Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates **p.a<sub>0</sub>.a<sub>1</sub>** Lightest Baryon N Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Light f<sub>0</sub> as Higgs Impostor

- Fermionic operator  $(f_0)$  is used
- Costly to compute the disconnected piece
  - $\Rightarrow$  Stochastic estimation with Dilution improvement is used
- Typically Noisy
  - $\Rightarrow$  Improvements such as Variational Method, Boosted operators

and Faster inverters are planned



•  $M_{f_0}$  remains low at 2 to 3  $F_{\pi}$ 

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

#### Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates **p.a<sub>0</sub>.a<sub>1</sub>** Lightest Baryon N Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Light f<sub>0</sub> as Higgs Impostor

- Fermionic operator  $(f_0)$  is used
- Costly to compute the disconnected piece
  - $\Rightarrow$  Stochastic estimation with Dilution improvement is used
- Typically Noisy
  - $\Rightarrow$  Improvements such as Variational Method, Boosted operators

and Faster inverters are planned



•  $M_{f_0}$  remains low at 2 to 3  $F_{\pi}$ 

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -LHC-Reachable Resonance Candidates

•  $\rho$ ,  $a_0$  and  $a_1$ 



- In the range of 6 to  $10 F_{\pi} \Rightarrow$  Lowest states within reach of LHC
- Fun Fact:

The observed excess in LHC as a walking techni- $\rho$  candidate is at 2 TeV ( $\approx 8F_{\pi}$ )! Coincidence? Really?

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -LHC-Reachable Resonance Candidates

•  $\rho$ ,  $a_0$  and  $a_1$ 



- In the range of 6 to  $10 F_{\pi} \Rightarrow$  Lowest states within reach of LHC
- Fun Fact:

The observed excess in LHC as a walking techni- $\rho$  candidate is at 2 TeV ( $\approx 8F_{\pi}$ )! Coincidence? Really?

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N Summary

Conclusion

## Hadron Spectroscopy on Extended Dataset -LHC-Reachable Resonance Candidates

•  $\rho$ ,  $a_0$  and  $a_1$ 



- In the range of 6 to 10  $F_{\pi} \Rightarrow$  Lowest states within reach of LHC
- Fun Fact:

The observed excess in LHC as a walking techni- $\rho$  candidate is at 2 TeV ( $\approx 8F_{\pi}$ )! Coincidence? Really?

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon N is tricky to be constructed due to symmetric color structure  $\Rightarrow$  Nonlocal operator required (Zoltan et al, POS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged <= strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

= •) < (• 13/16

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon *N* is tricky to be constructed due to symmetric color structure ⇒ Nonlocal operator required (Zoltan et al, PoS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged ( strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

≡ ♥) Q (♥ 13/16

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon N is tricky to be constructed due to symmetric color structure  $\Rightarrow$  Nonlocal operator required (Zoltan et al, POS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged \equiv strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon N is tricky to be constructed due to symmetric color structure  $\Rightarrow$  Nonlocal operator required (Zoltan et al, POS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged  $\Leftarrow$  strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho$ , $a_0$ , $a_1$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon N is tricky to be constructed due to symmetric color structure  $\Rightarrow$  Nonlocal operator required (Zoltan et al, POS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged  $\Leftarrow$  strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho_{a_0,a_1}$ 

Lightest Baryon N

Summary

Conclusion

# Hadron Spectroscopy on Extended Dataset -Lightest Baryon N

• The lightest baryon N is tricky to be constructed due to symmetric color structure  $\Rightarrow$  Nonlocal operator required (Zoltan et al, POS (LATTICE 2014) 270)



- Dark Matter candidate?
  - Fractionally-Charged  $\Leftarrow$  strictly constrained experimentally
  - Requires modification or extension of the model to possibly become Dark Matter candidates
- Interesting channel, whether Dark Matter candidate or not
- Stays heavy at 10 to 12  $F_{\pi}$

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

### Hadron Spectroscopy on Extended Dataset

• Summary:



• It is observed that the ratios change slowly in the range of the data. Assuming similar ratios at the chiral limit and

 $F \equiv F_{\pi}(M_{\pi} \rightarrow 0) \sim 250 \text{ GeV},$ 

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate:  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

### Hadron Spectroscopy on Extended Dataset

• Summary:



• It is observed that the ratios change slowly in the range of the data. Assuming similar ratios at the chiral limit and

$$F \equiv F_{\pi}(M_{\pi} \rightarrow 0) \sim 250 \text{ GeV},$$

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

Summary

Conclusion

# • Hadron Spectroscopy of the sextet model is continued with extended dataset:

- Naive linear fittings no longer applicable at smaller fermion masses
  A more comprehensive analysis is needed for a proper prediction
- from chiral extrapolation
- Assuming mild dependence of mass ratios on fermion mass,
  - Higgs Impostor remains light:  $M_{fo} \sim 2$  -
    - Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
  - LHC-Reachable Resonance Candidates:  $M_p, M_m$  and  $M_m \sim 6 11F_\pi$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
  - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub> Lightest Baryon N

Summary

- Hadron Spectroscopy of the sextet model is continued with extended dataset:
  - Naive linear fittings no longer applicable at smaller fermion masses
    ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation
  - Assuming mild dependence of mass ratios on fermion mass,
    - Higgs Impostor remains light:  $M_{h}\sim$ 
      - Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D **87**, 095001)
    - LHC-Reachable Resonance Candidates:  $M_p, M_m$  and  $M_m \sim 6 11F_\pi$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
    - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub>

Lightest Baryon N

Summary

Conclusion

• Hadron Spectroscopy of the sextet model is continued with extended dataset:

Naive linear fittings no longer applicable at smaller fermion masses
 ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation

• Assuming mild dependence of mass ratios on fermion mass,

• Higgs Impostor remains light:  $M_{f_0} \sim 2 - 3F_{\pi}$ Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

• LHC-Reachable Resonance Candidates:  $M_{\rho}$ ,  $M_{a_0}$  and  $M_{a_1} \sim 6 - 11F_{\pi}$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed

• Lightest Baryon: As heavy as  $M_N \sim 10 - 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own

 How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho.a_0.a_1$ 

Lightest Baryon ?

Summary

- Hadron Spectroscopy of the sextet model is continued with extended dataset:
  - Naive linear fittings no longer applicable at smaller fermion masses
    ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation
  - Assuming mild dependence of mass ratios on fermion mass,
    - Higgs Impostor remains light:  $M_{f_0} \sim 2 3F_{\pi}$ Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
    - LHC-Reachable Resonance Candidates:  $M_{\rho}$ ,  $M_{a_0}$  and  $M_{a_1} \sim 6 11F_{\pi}$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
    - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates *p.a*<sub>0</sub>.*a*<sub>1</sub>

Lightest Baryon ?

Summary

- Hadron Spectroscopy of the sextet model is continued with extended dataset:
  - Naive linear fittings no longer applicable at smaller fermion masses
    ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation
  - Assuming mild dependence of mass ratios on fermion mass,
    - Higgs Impostor remains light:  $M_{f_0} \sim 2 3F_{\pi}$ Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
    - LHC-Reachable Resonance Candidates:  $M_{\rho}, M_{a_0}$  and  $M_{a_1} \sim 6 11F_{\pi}$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
    - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho_{,a_0,a_1}$ 

Summary

- Hadron Spectroscopy of the sextet model is continued with extended dataset:
  - Naive linear fittings no longer applicable at smaller fermion masses
    ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation
  - Assuming mild dependence of mass ratios on fermion mass,
    - Higgs Impostor remains light:  $M_{f_0} \sim 2 3F_{\pi}$ Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
    - LHC-Reachable Resonance Candidates:  $M_{\rho}, M_{a_0}$  and  $M_{a_1} \sim 6 11F_{\pi}$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
    - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Hadron Spectroscopy with a low-mass composite scalar in the sextet model

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Details

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidates  $\rho.a_0.a_1$ Lightest Baryon N

Summary

- Hadron Spectroscopy of the sextet model is continued with extended dataset:
  - Naive linear fittings no longer applicable at smaller fermion masses
    ⇒ A more comprehensive analysis is needed for a proper prediction from chiral extrapolation
  - Assuming mild dependence of mass ratios on fermion mass,
    - Higgs Impostor remains light:  $M_{f_0} \sim 2 3F_{\pi}$ Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
    - LHC-Reachable Resonance Candidates:  $M_{\rho}, M_{a_0}$  and  $M_{a_1} \sim 6 11F_{\pi}$ , can be searched for in LHC, and a hint for  $\rho$  may have already been observed
    - Lightest Baryon: As heavy as  $M_N \sim 10 12F_{\pi}$ Fractionally-charged  $\Rightarrow$  unlikely to be Dark Matter candidate, but it is interesting on its own
- How much of our results are affected by lattice artifacts? ⇒ Study on Taste breaking effects and Restorations (details in Santanu Mondal's talk 17:10)

Chik Him (Ricky) Wong

Outline

Review

Hadron Spectroscopy

Simulation Detail

Light 0<sup>++</sup> ground state as Higgs Impostor

LHC-Reachable Resonance Candidate  $\rho_{a_0,a_1}$ 

Lightest Baryon N

Summary

Conclusion

# $M/M_{\pi}$ vs $M_{\pi}^2$

