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Motivation



QCD+QED: importance of valence e�ects

Example: dynamical QCD+QED contribution of BMW 2014

Neutron–proton mass splitting (in figure for artificially large e2)

Dashed line is obtained
from free fermion plus QED
one-loop finite-volume pole
mass shift. -10
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Figure S8: Finite-volume effects in baryon isospin splittings. The dependence is always consistent with the
universal behavior of Eq. (26) (dashed lines).
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Figure S8: Finite-volume effects in baryon isospin splittings. The dependence is always consistent with the
universal behavior of Eq. (26) (dashed lines).
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Figure 1: The proton-neutron mass splitting as a function of volume, taken
from Ref. [2]

Therefore also in this case one is able to perform a lattice QCD+QED com-
putation with negligible finite-volume errors by putting the valence structure
(and in particular the photons) explicitly in infinite volume.

For these reasons we suggest that the twist-averaging procedure followed
in this proposal should exhibit substantially suppressed finite-volume e↵ects
in lattice QCD+QED simulations.

2.2 Diagrams

In Fig. 4 we show the quark-connected contributions to the pion mass split-
ting. This should be contrasted with Fig. 5, taken from [5], that lists the
quark-connected diagram contributions to the QED corrections to f⇡. We
note that the computation of f⇡ diagrams (a), (b), and (c) is for the purpose
of the discussion below identical to the diagrams for the QED mass splitting.

In the case of the disconnected diagrams, topologies (a), (b), (d), (e)
are also present for the QED mass splitting. Therefore, we suggest that
the methods discussed below will allow for an e↵ective computation of both
observables with shared resources.

For the computation of f⇡, there is an additional complication since the
inclusion of real soft photon emission diagrams is necessary to remove an IR
divergence. Reference [5] proposes to use e↵ective field theory to subtract the

3
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Owing to the nonperturbative nature of QCD, the hadronic corrections to the muon g�2 are
the largest source of error in the SM calculation. These errors must be reduced to leverage
the new experiments [1]. The hadronic corrections enter at order ↵2 through the hadronic
vacuum polarization (HVP), shown in Fig. 4, and ↵3 through hadronic light-by-light (HLbL)
scattering, shown in Fig. 5, as well as higher order HVP contributions.

The HVP contribution to the muon anomaly has been precisely computed to an accuracy of
0.6% using experimental measurements of e+e� ! hadrons and ⌧ ! hadrons [78, 79]. The
result including ⌧ data is about 2 standard deviations larger than the pure e+e� contribu-
tion, and reduces the discrepancy with the Standard Model to 2.4 standard deviations [78].
The former requires isospin corrections which may not be under control. Alternatively,
⇢-� mixing may explain the di↵erence and bring the ⌧ -based result in line with that from
e+e� [81]. LQCD calculations serve as an important independent check on these results, but
at the moment statistical errors on lattice calculations of aµ(HVP) are at about the 3–5%
level [82–87], and important systematic errors remain. Most significant is that, for light
quark masses, the errors on the low-momentum region of ⇧(Q2) are not small enough, nor
are there su�cient points available in the crucial region, Q2 ⇠ m2

µ, to adequately estimate
aµ(HVP). Quark masses are still too heavy (and errors are still too large for light masses),
so fits are model-dependent. The good news is that all of these points are being addressed
in the latest calculations. Lattice calculations using model independent fit functions [88],
noise reduction techniques [89], twisted boundary conditions [87], charmed sea quarks [90],
and physical light quark masses on large lattices are underway. Large error reductions over
the next one to two years are not only possible, but likely. To get to the 1% level, or better,
disconnected diagrams like the one shown on the right in Fig. 4 and isospin breaking e↵ects
must be incorporated to complete the calculation. At this level, the lattice QCD calculation
becomes competitive with the traditional one based on e+e� and ⌧ data, and may provide
insight into the discrepancy between the two. Finally, we note that the HVP lattice calcu-
lation can be used to compute the QCD running of the fine structure constant, which plays

FIG. 4. Hadronic vacuum polarization diagrams contributing to the muon anomaly. The horizontal

lines represent the muon. The blobs formed by the quark loops represent all possible hadronic

intermediate states. Right panel: disconnected quark line contribution.

FIG. 5. Hadronic light-by-light scattering diagrams contributing to the muon anomaly. The

horizontal lines represent the muon. The blobs formed by the quark loops represent all possible

hadronic intermediate states. Right panel: one of the disconnected quark line contributions.

19

Unlike the HVP, where we usually treat the QED part in infinite
volume analytically and we only compute a QCD form factor (Blum
2000), for the (g − 2)µ HLbL contribution we compute the full
diagram and need to control QED (Luchang’s talk).
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A selection of studies of interest

∆mπ

Finite-volume errors

General FV problem of QCD+QED
simulations. However, for HVP com-
putations this was no issue (see
HPQCD 2014 error budget):

J. Koponen et al. / Nuclear Physics B Proceedings Supplement 00 (2014) 1–4 5

Set amsea
l amsea

s am�s ZV,s̄s L/a � T/a ncfg � nsrc

1 0.01300 0.0650 0.54024(15) 0.9887(20) 16 � 48 1020 � 12
2 0.00235 0.0647 0.52680(8) 0.9887(20) 32 � 48 1000 � 12
3 0.01020 0.0509 0.43138(12) 0.9938(17) 24 � 64 526 � 16
4 0.00507 0.0507 0.42664(9) 0.9938(17) 24 � 64 1019 � 16
5 0.00507 0.0507 0.42637(6) 0.9938(17) 32 � 64 988 � 16
6 0.00507 0.0507 0.41572(14) 0.9938(17) 32 � 64 300 � 16
7 0.00507 0.0507 0.42617(9) 0.9938(17) 40 � 64 313 � 16
8 0.00184 0.0507 0.42310(3) 0.9938(17) 48 � 64 1000 � 16
9 0.00740 0.0370 0.31384(9) 0.9944(10) 32 � 48 504 � 16

10 0.00120 0.0363 0.30480(4) 0.9944(10) 64 � 96 621 � 16

Table 1: Lattice ensembles used in this study, made by MILC collaboration [5, 6]. The first two sets are “very coarse” (lattice spacing a � 0.15 fm),
sets 3� 8 are “coarse” (a � 0.12 fm) and sets 9� 10 are “fine” (a � 0.09 fm) ensembles. amsea

l and amsea
s are the sea light and strange quark masses

in lattice units and am�s is the �s meson mass. ZV,s̄s is the vector current renormalisation constant. L and T are the spatial and temporal extents of
the lattice. ncfg is the number of configurations and nsrc is the number of time sources used in this study.

as
µ ac

µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a2 � 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.0% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

Table 2: Error budgets for connected contributions to the muon anomaly aµ from vacuum polarization of s and c quarks. See [1] for more detailed
discussion on the estimation of the errors.

as/c
µ dispersion HPQCD ETMC RBC/UKQCD

+ expt (prelim.) (prelim.)
as
µ � 1010 55.3(8) 53.4(6) 53(3) 52.4(2.1)

ac
µ � 1010 14.4(1) 14.4(4) 14.1(6) –

Table 3: Comparison with other results. The dispersion relation + experiment results are from [3] and [12]; HPQCD results are from [1] (moments
used for ac

µ were calculated in [9, 10]); ETMC results are from [11]; RBC/UKQCD results are from [13].

Benefit of treating the valence photon in infinite volume

q q

=
��
0 d(q2)f (q2)

�
1
q2

q + k

k

�(q ! 0)

�

= �̂(q2)

Blum 2002
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For LBL a similar decomposition would be much more challenging
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Figure 3: Standard procedure to compute the HVP contribution.
Example: QED corrections to e�ective masses

+ + = C0(t) + �C1(t)

We could compute QED mass-shifts from

me�(t) = me�,0(t) + �me�,1(t) , me�,1(t) =
C1(t)

C0(t)
� C1(t + 1)

C0(t + 1)
.

Following the prescription and adding
Dµ�

G (q2) = �µ�/q2 + (1 � ⇠)qµq�/(q2)2 yields photons in infinite
volume and no 1/Ln FV e�ects for QED.

The setup is similar to the HVP computation discussed above
(conserved vector currents yielding a q2 suppression of the QCD
amplitudes) but for the above figure we need four twist angles (per
dimension).
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Figure 4: Quark-connected electro-magnetic mass splitting diagrams.

momenta and from the inclusion of disconnected diagrams.
Next we explicitly give two options:

1. The stochastic wall-source method that explicitly puts photons and
valence quarks in infinite volume and allows for a unified computation
of all diagrams. The statistical noise of this method is, however, not
su�ciently known.

2. A method based on the periodic-plus-antiperiodic trick in all spatial
directions, thereby generating a symmetric (11fm)4 box for the 323⇥64
DSDR ensemble. This method has potential significant remnant finite-
volume errors but is very likely free of a stochastic noise problem.

We will also explore other methods that to di↵erent degrees interpolate
between the two.

2.3.1 Stochastic wall-source method

In this section we describe the stochastic wall-source method. Let us define

⌦t,t0(✓) = ⌘†
t D̃

�1(✓)⌘t0 , (1)

5
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FIG. 5: Connected diagrams contributing at O(�) contribution to the amplitude for the decay

⇡+ ! �+�l.

Having determined A0 and hence the amplitude ū�� �(p��)(M0)�� v� �(p�), the O(�0) con-

tribution to the decay width is readily obtained

�tree
0 (�+ ! �+��) =

G2
F |Vud|2f 2

⇡

8�
m⇡ m2

�

�
1 � m2

�

m2
⇡

�2

. (20)

In this equation we use the label tree to denote the absence of electromagnetic e�ects since

the subscript 0 here indicates that there are no photons in the final state.

B. Calculation at O(�)

We now consider the one-photon exchange contributions to the decay �+ ! �+�� and

show the corresponding six connected diagrams in Fig. 5 and the disconnected diagrams in

Fig. 6. By “disconnected” here we mean that there is a sea-quark loop connected, as usual,

to the remainder of the diagram by a photon and/or gluons (the presence of the gluons is

implicit in the diagrams). The photon propagator in these diagrams in the Feynman gauge

and in infinite (Euclidean) volume is given by

�µ��(x1, x2) = �µ�

Z
d4k

(2�)4

eik·(x1�x2)

k2
. (21)

In a finite volume the momentum integration is replaced by a summation over the mo-

menta which are allowed by the boundary conditions. For periodic boundary conditions,

we can neglect the contributions from the zero-mode k = 0 since a very soft photon does
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FIG. 6: Disconnected diagrams contributing at O(�) contribution to the amplitude for the decay

⇡+ ! �+�l. The curly line represents the photon and a sum over quark flavours q, q1 and q2 is to

be performed.

not resolve the structure of the pion and its e�ects cancel in �0 � �pt
0 in Eq. (3). Although

we evaluate �0 + �1(�E) (see Eq. (2)) in perturbation theory directly in infinite volume,

we note that the same cancellation would happen if one were to compute �1(�E) also in a

finite volume. Moreover from a spectral analysis we conclude that such a cancellation also

occurs in the Euclidean correlators from which the di�erent contributions to the decay rates

are extracted. For this reason in the following �0 and �pt
0 are evaluated separately but using

the following expression for the photon propagator in finite volume:

�µ��(x1, x2) = �µ�
1

L4

X

k= 2�
L

n; k �=0

eik·(x1�x2)

4
�

� sin2 k�

2

, (22)

where all quantities are in lattice units and the expression corresponds to the simplest lattice

discretisation. k, n, x1 and x2 are four component vectors and for illustration we have taken

the temporal and spatial extents of the lattice to be the same (L).

For other quantities, the presence of zero momentum excitations of the photon field is a

subtle issue that has to be handled with some care. In the case of the hadron spectrum the

problem has been studied in [22] and, more recently in [3, 4], where it has been shown, at

O(�), that the quenching of zero momentum modes corresponds in the infinite-volume limit

to the removal of sets of measure zero from the functional integral and that finite volume

Figure 5: Quark-connected (top) and quark-disconnected (bottom) dia-
grams for f⇡.

where ⌘t will be Z2⌦Z2 wall sources at time t and ⌦ is a 12⇥12 matrix and

h(⌘t)
†
x(⌘t0)x0i = �t,t0�x,x0 . (2)

The Dirac operator with ✓-twisted boundary conditions D(✓) is here written
in terms of a constant background gauge

D̃�1(✓)xy = e�i✓x/LD�1
xy (✓)ei✓y/L (3)

for future convenience.
We start with the leading order topology of the pion two-point function

with valence fermions in infinite volume. While this does not yet include the
important photon contribution, it serves to illustrate the method proposed

6

21

FIG. 9: Radiative corrections to the pion-lepton vertex. The diagrams represent O(�) contribu-

tions to �pt
0 . The left part of each diagram represents a contribution to the amplitude and the

right part the tree-level contribution to the hermitian conjugate of the amplitude. The correspond-

ing diagrams containing the radiative correction on the right-hand side of each diagram are also

included.

(a) (b) (c)

(d) (e) (f)

FIG. 10: Diagrams contributing to �1(�E). For diagrams (c), (d) and (e) the “conjugate” con-

tributions in which the photon vertices on the left and right of each diagram are interchanged are

also to be included.

and r� = m�/m⇡. These diagrams correspond to the diagrams Fig. 5(e) and Fig. 5(f) in the

composite pion case.

Next we give the contributions to �1(�E) where the real photon is emitted and absorbed

by the pion (��), the charged lepton (��) or emitted by the pion and absorbed by the lepton

or vice-versa (��). The results are presented in the Feynman gauge:

X

r

��µ(k, r) ��(k, r) = gµ� , (43)

where �µ(k, r) are the polarisation vectors of the real photon carrying a momentum k, with

k2 = 0 in Minkowski space.

• Real photon emission, ��: The contribution to �1(�E) from the emission and absorption
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Figure 6: Soft-photon emission in e↵ective field theory.

in Ref. [1] in a simple example. We refer to Ref. [1] for further details on
the method. We write the correlation function as

C(z) =

Z ⇡

�⇡
dp e�ipzC(p) (4)

=

Z ⇡

�⇡
dp

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V1

Tr �5D
�1
x0 (✓1)�5D

�1
0x (✓2)e

ip(x�z) (5)

=

Z ⇡

�⇡
dp✓

1

L

X

pPBC

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V

Tr �5D
�1
x0 (✓1)�5D

�1
0x (✓2)

⇥ eipPBC(x�z)eip✓(x�z)/L 2⇡

L
�̂(p✓ + ✓1 � ✓2) , (6)

=
2⇡

L2

X

pPBC

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V

Tr �5D̃
�1
x0 (✓1)�5D̃

�1
0x (✓2)

⇥ eipPBCxeiz((✓1�✓2)/L�pPBC) , (7)

where we decompose p = 2⇡n/L + p✓/L ⌘ pPBC + p✓/L. The projection to
zero momentum at the sink now naturally requires the sum over z in infinite-
volume. If we do this, however, we force the two twist angles to coincide.
This would require designated twist-angle solves for each diagram to enforce
momentum conservation. More importantly, each twist angle requires an
additional Lanczos invocation, which we prefer to avoid. We therefore sum
at the sink with an appropriate slowly varying phase, which should still to

7
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(g − 2)µ HLbLThe hadronic light-by-light contribution

Hadronic light-by-light scattering contribution to the muon anomalous magnetic
moment from lattice QCD

Thomas Blum,1, 2 Saumitra Chowdhury,1 Masashi Hayakawa,3, 4 and Taku Izubuchi5, 2

1Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
2RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

3Department of Physics, Nagoya University, Nagoya 464-8602, Japan
4Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan

5Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Dated: July 11, 2014)

The form factor that yields the light-by-light scattering contribution to the muon anomalous
magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of
QED is used and is checked against perturbation theory. The hadronic contribution is calculated
for unphysical quark and muon masses, and only the diagram with a single quark loop is computed.
Statistically significant signals are obtained. Initial results appear promising, and the prospect for
a complete calculation with physical masses and controlled errors is discussed.

INTRODUCTION

The muon anomaly aµ provides one of the most strin-
gent tests of the standard model because it has been
measured to great accuracy (0.54 ppm) [1], and calcu-
lated to even better precision [2–4]. At present, the dif-
ference observed between the experimentally measured
value and the standard model prediction ranges between
249 (87) ⇥ 10�11 and 287 (80) ⇥ 10�11, or about 2.9 to
3.6 standard deviations [2–4]. In order to confirm such
a di↵erence, which then ought to be accounted for by
new physics, new experiments are under preparation at
Fermilab (E989) and J-PARC (E34), aiming for an accu-
racy of 0.14 ppm. This improvement in the experiments,
however, will not be useful unless the uncertainty in the
theory is also reduced.

Table I summarizes the contributions to aµ from
QED [2], electroweak (EW) [5], and QCD sectors of the
standard model. The uncertainty in the QCD contri-
bution saturates the theory error. The precision of the
leading-order (LO) hadronic vacuum polarization (HVP)
contribution requires sub-percent precision on QCD dy-
namics, reached using a dispersion relation and either
the experimental production cross section for hadrons
(+�) in e+e� collisions at low energy, or the experimental
hadronic decay rate of the � -lepton with isospin breaking
taken into account. Meanwhile lattice QCD calculations
of this quantity are improving rapidly [6], and will pro-
vide an important crosscheck.

Unlike the case for the HVP, it is di�cult, if not im-
possible, to determine the hadronic light-by-light scat-
tering (HLbL) contribution (Fig. 1), aµ(HLbL), from ex-
perimental data and a dispersion relation [7]. So far,
only model calculations have been done. The uncertainty
quoted in Table I was estimated by the “Glasgow consen-
sus” [8]. Note that the size of aµ(HLbL) is the same order
as the current discrepancy between theory and experi-
ment. Thus, a first principles calculation, which is sys-

TABLE I. The standard model contributions to the muon
g�2, scaled by 1010; the QED contribution up to O(�5), EW
up to O(�2), and QCD up to O(�3), consisting of the leading-
order (LO) HVP, the next-to-leading-order (NLO) HVP, and
HLbL. For the LO HVP three results obtained without (the
first two) and with (the last) � � hadrons are shown.

QED 116 584 71.8 951 (9)(19)(7)(77) [2]
EW 15.4 (2) [5]
QCD LO HVP 692.3 (4.2) [3]

694.91 (3.72) (2.10) [4]
701.5 (4.7) [3]

NLO HVP �9.79 (9) [9]
HLbL 10.5 (2.6) [8]

tematically improvable, is strongly desired for aµ(HLbL).
In this paper, we present the first result for the magnetic
form factor yielding aµ(HLbL) using lattice QCD.

FIG. 1. Hadronic light-by-light scattering contribution to
the muon g � 2, where the grey part consists of quarks and
gluons. The wavy lines denote photons, and the dashed arrow
line represents the muon.
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Figure 7: Light-by-light contribution to (g � 2)µ

a good degree eliminate overlap with non-zero momentum states. We find

C(zt) =
X

~z2V

e�i~z((~✓1�~✓2)/LC(z) (8)

/
Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V |xt=�zt

Tr �5D̃
�1
x0 (✓1)�5D̃

�1
0x (✓2) . (9)

This can now e�ciently be evaluated using

C(t) = hTr �5⌦t,0(✓1)�5⌦0,t(✓2)i✓1,✓2 , (10)

where the average is now also over independent four-dimensional twists ✓1
and ✓2.

Next, we turn to a diagram including a photon exchange. As an example,
we may obtain a photon self-energy diagram such as (a) of Fig. 5 by replacing

⌦t,0(✓1) !
X

t0,t00
⌦t,t0(✓1)�µ⌦

⇠
t0,t00(✓3)�µ⌦

⇠
t00,0(✓1)�t0,t00(✓1 � ✓3) (11)

with

⌦⇠
t,t0(✓) =

X

x,y

(⇠t)x(⌘†
t )x(D̃�1(✓))xy(⌘t0)y , (12)

and

�t0,t00(✓) =
X

x,y2V

(⇠t0)x�(✓)x�y(⇠t00)y (13)

8
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Target: infinite-volume QCD+QED simulation

Find numerical approximation to infinite-volume QCD+QED with
small finite-volume errors

A potential problem: isolated poles turn into cuts and the
projection to the ground state may require very large distances.

Assuming the level density ρ(E ) is analytic in E , we have

C (t) =

∫ ∞

E0

dE ρ(E )e−Et =

( ∞∑

m=1

cm(E0)t−m

)
e−E0t , (1)

see backup slides for derivation, and therefore

meff(t) = E0 +
∞∑

n=1

dn(E0)t−n . (2)

This extends trivially in the presence of additional isolated poles.
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Example: Infinite-volume free
Dirac fermion point-source
propagator in position space
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m
ef
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t

Unimproved
O(1/t) improved

O(1/t2) improved
Exact result

One possible solution: explicitly cancel the 1/t term by defining an
improved effective mass

meff,O(1/t)(t) = (t + 1)meff (t + 1)− t meff (t) . (3)
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Introduction to the method



I Extension of twist-averaging procedure: By suitable averages
over boundary conditions we can put valence fermions and the
coupled photons in infinite volume (for details, please see
arXiv:1503.04395). The large/infinite volume can be created
in a stochastic manner.

I Here: investigate the role of the QCD and QED part
separately.

I Focusing on a single photon propagator G (x), a general
QCD-plus-QED diagram can be written as

〈C 〉 =
∑

x ,y

〈V (x)V (y)O1(z1) . . .On(zn)〉G (x − y) , (4)

where x , y are the fermion-photon vertex positions.
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I Cluster decomposition: if we put the operators in Eq. (4) in
two groups A and B with A containing V (x) and B
containing V (y) and displace the operators A in space-time
by ∆, we have for sufficiently large |∆|

〈A(∆)B〉 − 〈A(∆)〉〈B〉 = 0 . (5)

I Naturally, if for all possible groups 〈A(∆)〉〈B〉 = 0, the large
distance part of the photon propagator in Eq. (4) is
suppressed by the fermionic contractions. In a theory with a
mass gap such as QCD, this additional suppression through
de-correlation is reached exponentially in |∆|. We will refer to
such cases as class A problems. Typical examples are
discussed below in the context of QED mass splittings.

I All diagrams not in class A will be referred to as class B. The
connected (g − 2)µ HLbL diagram falls into this category.



Since the QCD part does in general not have power-like FV errors
(such cases require a separate discussion), there are only two
sources of power-like FV errors:

1. 1/Ln corrections in short-distance part of photon propagator
and

2. 1/Ln corrections introduced by cutting the long-distance 1/r2

photon propagator at the boundary of the simulation volume.

For class A, 2) is irrelevant and hence we suggest that for class A
problems removing 1/Ln corrections from the short-distance part of
the photon propagator removes power-like finite-volume errors!

For class B problems the long-distance part of the photon
propagator is crucial. We will discuss a possible solution in the
case of (g − 2)µ below.



In addition to the common QEDL (~k = 0 subtraction) and QEDTL

(k = 0 subtraction), we define QED∞ through

G (x) =

∫ π

−π

d4k

(2π)4

e ikx

k̂2
(6)

with

k̂µ = 2 sin(kµ/2) (7)

and

k̂2 =
∑

µ

k̂2
µ . (8)

Analytic and numerical methods for an efficient computation are
available (Izubuchi, Jin, and C.L. 2015).

One can use QED∞ also in dynamical QCD+QED. To this end a
simple DFT of G (x) with x in a finite volume yields G (k).
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A scalar test



+

Example: QED mass correction on a lattice in finite volume

1

p2 + m2
C (p) = + α

∑

k∈BZ4

1

p2 + m2

1

(p − k)2 + m2

1

p2 + m2

1

k
2

with pµ = 2 sin(pµ/2)

Strategy: compute C (x) =
∑

p∈BZ4 e ipxC (p) in finite-
volume and perform effective-mass fit
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The expected structure of the correlation function is

C (t) = C (0)(t) + αQEDC (1)(t) (9)

with

C (1)(t) = (∆Z (1) −∆m(1)t)C (0)(t) (10)

such that

C (t) = (1 + αQED∆Z (1))e−α
QED∆m(1)tC (0)(t) . (11)

We extract

∆m(1)(t) =
C (1)(t)

C (0)(t)
− C (1)(t + 1)

C (0)(t + 1)
. (12)
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∆mQED in QCD



QCD+QED test computation of pion vertex correction diagram

Compute the diagram

UV⇒ × ×

with two local vector currents for now. Ultraviolet part of diagram
for finite separation of pions amounts to pion operator
renormalization and should not affect the mass splitting.

Simulation details: a−1 = 1.73 GeV, V = 163 × 32 and 243 × 64,
mπ = 422 MeV, 2+1 DWF sea quarks, 20 configurations, 100
point-sources per configuration sampling quark-photon vertex positions;
use importance sampling (see Luchang’s talk)
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(g − 2)µ HLbL



xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ

z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

Figure 5. The three di�erent possible insertions of the external photon in the connected light-by-

light diagram. While the location of the external photon vertex xop may be fixed, the other three

positions where the internal photons are connected to the quark line x, y and z must be integrated

over space-time.

z must remain close to the fixed position xop. Thus, up to exponentially small corrections

Eq. (4) can also be evaluated in a large but finite volume.

Starting with Eq. (4) we exploit the translational symmetry discussed above, and dis-

place the four arguments x, y, z and xop of the function F� by the four-vector (x + y)/2,

transforming that equation into

G�(pf , xop, pi) =

Z
d4x

Z
d4y

Z
d4z F�

�
x � y

2
, �x � y

2
, z � x + y

2
, xop � x + y

2

�

ei�q·(�x+�y)/2. (5)

=

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xope�i�q·��xop , (6)

where we have defined q = pi � pf and in the final equation we have adopted the three new

integration variables:

w = x � y, �z = z � x + y

2
, �xop = xop � x + y

2
. (7)

The critical step in our derivation replaces the factor e�i�q·��xop in Eq. (6) by (e�i�q·��xop � 1)

giving:

G�(pf , xop, pi) =

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xop

�
e�i�q·��xop � 1

�
, (8)

The extra ‘1’ term introduced into the integrand over �xop will vanish if

�

�(�xop)�
F�

�w

2
, �w

2
, �z, �xop

�
= 0 (9)

2

For this diagram separate QCD and QED expectation values are
not zero hence category two and we need to sum over all
displacements between QCD and QED part to control FV errors.
Class b.
Proposal of stochastic sampling ... in the process ... no data yet
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This is a class B diagram. After
removing the photons, the separate
QCD and free muon quantum aver-
ages do not vanish and therefore large
photon distances are not suppressed.
Need to sum over all displacements
between QCD and QED part to con-
trol FV errors.

Base on method presented in Luchang’s talk, compute M
µνρ
A (x, y, z) =∑

x′,y′,z′∈A G(x′ − x)G(y′ − y)G(z′ − z)

[
F (x0 − x′)γµF (x′ − z′)γρF (z′ − y′)γνF (y′ − x1)

]
with

A = {(x, y, z, t)|x ∈ {−Lx/2, . . . , Lx/2− 1}, y ∈ . . .}. Computation for fixed x , y
and all z with convolutions has O(V logV ) cost.

Proposal: Use continuum propagators and vertices and∑
x′∈A f (x′)→

∫ a
0 dδ4 ∑

n

∑
x′∈A f (x′ + δ + nL) with integral over δ and sum over

n stochastically. Work in progress . . .
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Conclusions
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I Discuss and categorize QCD+QED finite-volume errors,
introduce QED∞

I To be published soon

I Outlook: self-energy diagrams, statistics, dynamical
QCD+QED, decay constants, complete (g − 2)µ HLbL
infinite-volume study
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Backup



Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Ψ(x + L̂1 + L̂2) Ψ(x + 2L̂1 + L̂2) Ψ(x + 3L̂1 + L̂2)

Ψ(x + L̂1) Ψ(x + 2L̂1) Ψ(x + 3L̂1)

Valence fermions Ψ living on a repeated gluon background Uµ with
periodicity L1, L2 and vectors L̂1 = (L1, 0), L̂2 = (0, L2)

arXiv:1503.04395QCD setup



Let ψθ be the quark fields of your finite-volume action with
twisted-boundary conditions

ψθx+L = e iθψθx .

Then one can show that

〈
Ψx+nLΨ̄y+mL

〉
=

∫ 2π

0

dθ

2π
e iθ(n−m)

〈
ψθx ψ̄

θ
y

〉
, (13)

where the 〈·〉 denotes the fermionic contraction in a fixed
background gauge field Uµ(x). (4d proof available.)

This specific prescription produces exactly the setup of the
previous page, it allows for the definition of a conserved current,
and allows for a prescription for flavor-diagonal states.

arXiv:1503.04395



Twist-averaged version:

e ik(y+mL)
〈
Ψx+nLΨ̄y+mL

〉 〈
Ψy+mLΨ̄z+lL

〉

=

∫ 2π

0

dθ

2π

∫ 2π

0

dθ′

2π
e ik(y+mL)e iθ(n−m)+iθ′(m−l)

〈
ψθx ψ̄

θ
y

〉〈
ψθ
′

y ψ̄
θ′
z

〉
,

Perform sum over m using Poisson’s summation formula yields

∑

m

e ik(y+mL)
〈
Ψx+nLΨ̄y+mL

〉 〈
Ψy+mLΨ̄z+lL

〉

= e iky

∫ 2π

0

dθ

2π

∫ 2π

0

dθ′

2π
e iθn−iθ′l δ̂(k − (θ − θ′)/L)

〈
ψθx ψ̄

θ
y

〉〈
ψθ
′

y ψ̄
θ′
z

〉
,

with δ̂(k) = 2π
L

∑
n∈N δ(k + 2πn/L).

TA yields momentum conservation of twists



+

Example: QED mass correction on a lattice in finite volume

plus TA

1

p2 + m2
C (p) = +α

〈 ∑

k∈BZ4

1

p2 + m2

1

(p − k ′)2 + m2

1

p2 + m2

1

k ′
2

〉

θ4

with pµ = 2 sin(pµ/2) and k ′µ = kµ + θµ/Lµ

Strategy: compute C (x) =
∑

p∈BZ4 e ipxC (p) in finite-
volume and perform effective-mass fit



Infinite-volume correlator with dense set of states and analytic
ρ(E ):

C (t) =

∫ ∞

E0

dE ρ(E )e−Et =
∞∑

n=0

bn

∫ ∞

E0

dE Ene−Et

=
∞∑

n=0

bn(−1)n∂n
t t
−1e−E0t =

( ∞∑

m=1

cm(E0)t−m

)
e−E0t .

(14)

Trivially extended to case of additional isolated poles.
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