Computing the long-distance contributions to ε_{K}

Lattice 2015 - Kobe

July 17, 2015

Ziyuan Bai
Norman H. Christ
Columbia University
RBC and UKQCD Collaborations

Overview

- ε_{K} : Indirect CP violation in $K^{0} \rightarrow \pi \pi$ decay.
- Experiment: 2.228(11) $\times 10^{-3}$
- Theory: $2.13(23) \times 10^{-3}$ [SWME arXiv:1503.06613]
- Theory error dominated by $\left(V_{c b}\right)^{4}$ factor
- ε_{K} decomposition:
- 2/3 top quark loop \quad - $1 / 3$ top and charm short distance
- 2-4\% long distance contribution

RBC Collaboration

- BNL
- Chulwoo Jung
- Taku Izubuchi (RBRC)
- Christoph Lehner
- Meifeng Lin
- Amarjit Soni
- RBRC
- Chris Kelly
- Tomomi Ishikawa
- Taichi Kawanai
- Shigemi Ohta (KEK)
- Sergey Syritsyn
- Columbia
- Ziyuan Bai
- Xu Feng
- Norman Christ
- Luchang Jin
- Robert Mawhinney
- Greg McGlynn
- David Murphy
- Daiqian Zhang
- Connecticut
- Tom Blum

UKQCD Collaboration

- Edinburgh
- Peter Boyle
- Luigi Del Debbio
- Julien Frison
- Jamie Hudspith
- Richard Kenway
- Ava Khamseh
- Brian Pendleton
- Karthee Sivalingam
- Oliver Witzel
- Azusa Yamaguchi
- Plymouth
- Nicolas Garron
- York (Toronto)
- Renwick Hudspith
- Southampton
- Jonathan Flynn
- Tadeusz Janowski
- Andreas Juttner
- Andrew Lawson
- Edwin Lizarazo
- Antonin Portelli
- Chris Sachrajda
- Francesco Sanfilippo
- Matthew Spraggs
- Tobias Tsang
- CERN
- Marina Marinkovic

$K^{0}-\overline{K^{0}}$ mixing

- $\Delta S=1$ weak interactions allow $\overline{K^{0}}$ and K^{0} to mix.

- CP violation leads to decay eigenstates K_{L} and K_{S} which are not CP eigenstates:
- Here ε is closely related to:

$$
\begin{aligned}
& K_{S}=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\epsilon|^{2}}} \\
& K_{L}=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} \\
& \epsilon_{K}=\bar{\epsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}
\end{aligned}
$$

Conventional calculation of ε_{K}

- Introduce $D S=2$ effective Hamiltonian:

$$
\begin{array}{cc}
\Delta M_{K} & \text { top } \\
\mathcal{H}_{\text {eff }}^{\Delta S=2}=\frac{G_{F}^{2}}{16 \pi^{2}}\left[\lambda_{c}^{2} \eta_{c c} S_{0}\left(x_{c}\right)+\lambda_{t}^{2} \eta_{t t} S_{0}\left(x_{t}\right)\right. & \begin{array}{c}
\text { top- } \\
\text { charm }
\end{array} \\
\lambda_{i}=V_{i, d}^{*} V_{i, s} & \left.+2 \lambda_{c} \lambda_{t} \eta_{c t} S_{0}\left(x_{c}, x_{t}\right)\right] b(\mu) Q_{L L}
\end{array}
$$

- S_{0} is the 1-loop Inami-Lim function and $x_{q}=\left(\frac{m_{q}}{M_{W}}\right)^{2}$
- Lattice QCD gives the $K^{0}-\overline{K^{0}}$ matrix element of $Q_{L L}$:

$$
B_{K}=\frac{3\left\langle\bar{K}^{0}\right| Q_{L L}\left|K^{0}\right\rangle}{8 f_{\bar{K}}^{2} M_{K}^{2}} \quad \text { where } \quad Q_{L L}=\bar{s}\left(1-\gamma^{5}\right) d \bar{s}\left(1-\gamma^{5}\right) d
$$

Standard Model Review

- Three up-type propagators:

- GIM subtraction:

$$
\begin{aligned}
\sum_{i=u, c, t} & \left\{V_{i, d}^{*} \frac{p}{p^{2}+m_{i}^{2}} V_{i, s}-V_{i, d}^{*} \frac{p}{p^{2}+m_{c}^{2}} V_{i, s}\right\} \\
& =\lambda_{t}\left\{\frac{p}{p^{2}+m_{t}^{2}}-\frac{p}{p^{2}+m_{c}^{2}}\right\}+\lambda_{u}\left\{\frac{p}{p^{2}+m_{u}^{2}}-\frac{p}{p^{2}+m_{c}^{2}}\right\} \\
\lambda_{i}= & V_{i, d}^{*} V_{i, s}
\end{aligned}
$$

Six contributions to ΔM_{K} and ε_{K}

- Six types of diagram:

$$
\lambda_{i} \lambda_{j}=\lambda_{t} \lambda_{t}, \lambda_{u} \lambda_{u} \text { and } \lambda_{t} \lambda_{u}
$$

- $\Delta M_{K}: \lambda_{u} \lambda_{u}$ term
- $\varepsilon_{K}: \lambda_{t} \lambda_{t}$ and $\lambda_{u} \lambda_{t}$ term

$\lambda_{u} \lambda_{t}$ Box diagram

- Enhanced by $\lambda_{u} / \lambda_{t} \sim 10^{3}$
- Suppressed by $\left(m_{c} / m_{t}\right)^{2} \sim 4.5 \times 10^{-5}$
- Long distance contributes $\sim 4 \%$ to $\varepsilon_{\text {K }}$

Lattice Version

- Evaluate standard, Euclidean, $2^{\text {nd }}$ order $K^{0}-\overline{K^{0}}$ amplitude:

$$
\mathcal{A}=\langle 0| T\left(K^{0}\left(t_{f}\right) \frac{1}{2} \int_{t_{a}}^{t_{b}} d t_{2} \int_{t_{a}}^{t_{b}} d t_{1} H_{W}\left(t_{2}\right) H_{W}\left(t_{1}\right) K^{0^{0}}\left(t_{i}\right)\right)|0\rangle
$$

Interpret Lattice Result

$$
\begin{aligned}
& \text { (1.) (2.) } \\
& \mathcal{A}=N_{R_{R}}^{2} e^{-M_{K}\left(t_{y}-t\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}\left(-\left(t_{b}-t_{a}\right)-\frac{1}{M_{K}-E_{n}}\right. \\
& \text { 1. } \Delta m_{K}{ }^{\mathrm{FV}} \\
& \left.+\frac{e^{\left(M_{K}-E_{n}\right)\left(t_{b}-t_{a}\right)}}{M_{K}-E_{n}}\right) \\
& \text { 2. Uninteresting constant }
\end{aligned}
$$

3. Growing or decreasing exponential: states with $E_{n}<m_{K}$ must be removed!

- Finite volume correction:
$\left.M_{K_{L}}-M_{K_{S}}=2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}-\left.2 \frac{d\left(\phi+\delta_{0}\right)}{d k}\right|_{m_{K}}\left|\left\langle n_{0}\right| H_{W}\right| K^{0}\right\rangle\left.\left.\right|^{2} \cot \left(\phi+\delta_{0}\right)\right|_{M_{K}}$
(N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda, (Phys.Rev. D91
(2015) 11, 114510 [arXiv:1504.01170])

$\Delta S=1$, four-flavor operators

- Choose appropriate $\boldsymbol{N}_{f}=4$ effective Hamiltonian:

$$
\left.\begin{array}{rl}
H_{W}^{\Delta S=1: \Delta C= \pm 1,0} & =\frac{G_{F}}{\sqrt{2}}\left\{\sum_{q, q^{\prime}=u, c} V_{q, s}^{*} V_{q d} \sum_{i=1}^{2} c_{i} Q_{i}^{q^{q} q}+V_{t s}^{*} V_{i d} \sum_{i=3}^{6} C_{i} Q_{i}\right\} \\
Q_{1}^{q q q} & =\left(\bar{s}_{i} q_{j}^{\prime}\right)_{V-A}\left(\bar{q}_{q} d_{i}\right)_{V-A} \\
Q_{2}^{q q q} & =\left(\bar{s}_{i} q_{i}^{\prime}\right)_{V-A}\left(\bar{q}_{j} d_{j}\right)_{V-A} \\
Q_{3} & =\left(\bar{s}_{i} d_{i}\right)_{V-A} \sum_{q=u, d, c, c}\left(\bar{q}_{j} q_{j}\right)_{V-A} \\
Q_{4} & =\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{i}\right)_{V-A} \\
Q_{5} & =\left(\bar{s}_{i} d_{i}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{j}\right)_{V+A} \tag{12}\\
Q_{6} & =\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, u, d, c, c}\left(\bar{q}_{j} q_{i}\right)_{V+A}
\end{array}\right\} \text { QCD penguin } \mathrm{x} \text { current }
$$

Diagrams for $\lambda_{t} \lambda_{u}$ contribution to ε_{K}

- Identify five types of diagrams
type 1

$$
i=1,2, j=1,2
$$

Omit from $1^{\text {st }}$ study

Correcting short distance part

- Evaluate off-shell Green's function at $\boldsymbol{p}_{\boldsymbol{i}}{ }^{2}=\mu^{2}$
- Forces internal momentum also to the scale μ or greater
- μ must obey:
- $\alpha_{S}\left(\mu^{2}\right) \ll 1$ so perturbation theory is accurate.
- $a \mu \ll 1$ to avoid lattice artifacts.

Simulation details

- Use $24^{3} \times 64,1 / a=1.73 \mathrm{GeV}$ ensemble
- $m_{\pi}=329 \mathrm{MeV}, m_{K}=575 \mathrm{MeV}, m_{c}=941 \mathrm{MeV}$ (0.363/a)
- Average over 64 separate, time-translated measurements on 200 configurations.
- Use low-mode deflation with 300 Lanczos eigenvectors
- Study 1.4 GeV $\leq \mu \leq 2.6 \mathrm{GeV}$

Short-distance lattice correction

- Results for short-distance coefficient E_{11} and E_{22} of $O_{L L}$ for the products $Q_{1} Q_{1}$ and $Q_{2} Q_{2}$:

- Effect of a cutoff radius $|x-y|<R$ at $\mu=1.93 \mathrm{GeV}$

Cutoff	3	4	5	6	none
$E_{11}^{\text {lat }}$	0.1462	0.1501	0.1493	0.1489	0.1489
$E_{22}{ }^{\text {lat }}$	0.0418	0.0427	0.0425	0.0425	0.0425

Integrated Correlators

Combine short(PT)- and long(lattice)-

 distance parts- Use C. Lehner's PhySyHCAI to add back the correct perturbative short distance part at LO.

$\mu(\mathrm{GeV})$	$\operatorname{Im} M_{0 \overline{0}}^{u t, l d}\left(10^{-15} \mathrm{MeV}\right)$	$\operatorname{Im} M_{0 \overline{0}}^{u t, c o n t}\left(10^{-15} \mathrm{MeV}\right)$	$\operatorname{Im} M_{0 \overline{0}}^{u t}\left(10^{-15} \mathrm{MeV}\right)$
1.54	$-0.871(30)$	$-4.772(56)$	$-5.642(64)$
1.92	$-1.065(30)$	$-4.546(54)$	$-5.601(62)$
2.11	$-1.151(31)$	$-4.435(52)$	$-5.586(61)$
2.31	$-1.226(31)$	$-4.350(51)$	$-5.576(60)$
2.56	$-1.302(30)$	$-4.208(50)$	$-5.511(58)$

- Result: tt ut $\boldsymbol{u t d}_{\text {sd }} \quad \operatorname{Im}\left(\boldsymbol{A}_{\mathbf{0}}\right)$

$$
\begin{aligned}
\left|\varepsilon_{K}\right|= & (1.806+0.892+\underline{(0.209(6)}+0.111) \times 10^{-3} \longleftarrow \\
& =3.019(45) \times 10^{-3} \\
& \left(2.228(11) \times 10^{-3} \text { expt. }\right)
\end{aligned}
$$

Outlook

- Long-distance component of ε_{K} will be important when $V_{c b}$ becomes better known.
- Accessible to lattice QCD.
- Controlled, 15-20\% errors should be possible in $\sim 2-3$ years, with $1 / a \geq 3 \mathrm{GeV}$ ensembles.
- Perturbative calculation of short distance part needed. (Use Pauli-Villars rather than RomeSouthampton methods? Xu Feng)

