# Computing the long-distance contributions to $\varepsilon_{K}$

Lattice 2015 – Kobe July 17, 2015

Ziyuan Bai

Norman H. Christ

Columbia University

**RBC** and **UKQCD** Collaborations

# **Overview**

- $\varepsilon_{K}$ : Indirect CP violation in  $K^{0} \rightarrow \pi\pi$  decay.
  - Experiment: 2.228(11) x 10<sup>-3</sup>
  - Theory: 2.13(23) x 10<sup>-3</sup> [SWME arXiv:1503.06613]
- Theory error dominated by  $(V_{ch})^4$  factor
- $\boldsymbol{\varepsilon}_{\boldsymbol{K}}$  decomposition:
  - 2/3 top quark loop
    1/3 top and charm
    short distance
- 2 4% long distance contribution

## **RBC Collaboration**

#### • BNL

- Chulwoo Jung
- Taku Izubuchi (RBRC)
- Christoph Lehner
- Meifeng Lin
- Amarjit Soni
- RBRC
  - Chris Kelly
  - Tomomi Ishikawa
  - Taichi Kawanai
  - Shigemi Ohta (KEK)
  - Sergey Syritsyn

- Columbia
  - Ziyuan Bai
  - Xu Feng
  - Norman Christ
  - Luchang Jin
  - Robert Mawhinney
  - Greg McGlynn
  - David Murphy
  - Daiqian Zhang
- Connecticut – Tom Blum

## **UKQCD** Collaboration

- Edinburgh
  - Peter Boyle
  - Luigi Del Debbio
  - Julien Frison
  - Jamie Hudspith
  - Richard Kenway
  - Ava Khamseh
  - Brian Pendleton
  - Karthee Sivalingam
  - Oliver Witzel
  - Azusa Yamaguchi
- Plymouth
  - Nicolas Garron
- York (Toronto)
  - Renwick Hudspith

- Southampton
  - Jonathan Flynn
  - Tadeusz Janowski
  - Andreas Juttner
  - Andrew Lawson
  - Edwin Lizarazo
  - Antonin Portelli
  - Chris Sachrajda
  - Francesco Sanfilippo
  - Matthew Spraggs
  - Tobias Tsang
- CERN
  - Marina Marinkovic

## $K^0 - \overline{K^0}$ mixing

- $\Delta S=1$  weak interactions allow  $\overline{K^0}$  and  $K^0$  to mix.
- CP violation leads to decay eigenstates *K<sub>L</sub>* and *K<sub>S</sub>* which are not CP eigenstates:
- Here  $\varepsilon$  is closely related to:



 $K_{S} = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}}$  $K_{L} = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}}$  $\epsilon_{K} = \overline{\epsilon} + i\frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}}$ 

## **Conventional calculation of** $\varepsilon_K$

• Introduce DS = 2 effective Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{\Delta S=2} = \frac{G_F^2}{16\pi^2} \begin{bmatrix} \lambda_c^2 \eta_{cc} S_0(x_c) + \lambda_t^2 \eta_{tt} S_0(x_t) & \text{top-}\\ \lambda_i = V_{i,d}^* V_{i,s} & +2\lambda_c \lambda_t \eta_{ct} S_0(x_c, x_t) \end{bmatrix} b(\mu) Q_{LL}$$

- $S_0$  is the 1-loop Inami-Lim function and  $x_q = \left(\frac{m_q}{M_W}\right)^2$
- Lattice QCD gives the  $K^0$ - $\overline{K^0}$  matrix element of  $Q_{LL}$ :

$$B_K = \frac{3\langle \overline{K}^0 | Q_{LL} | K^0 \rangle}{8f_K^2 M_K^2} \quad \text{where} \quad Q_{LL} = \overline{s}(1 - \gamma^5) d \ \overline{s}(1 - \gamma^5) d$$

Lattice 2015 -- July 17, 2015 (6)

## **Standard Model Review**

• Three up-type propagators:



• GIM subtraction:

$$\sum_{i=u,c,t} \left\{ V_{i,d}^* \frac{p}{p^2 + m_i^2} V_{i,s} - V_{i,d}^* \frac{p}{p^2 + m_c^2} V_{i,s} \right\}$$
$$= \lambda_t \left\{ \frac{p}{p^2 + m_t^2} - \frac{p}{p^2 + m_c^2} \right\} + \lambda_u \left\{ \frac{p}{p^2 + m_u^2} - \frac{p}{p^2 + m_c^2} \right\}$$
$$\lambda_i = V_{i,d}^* V_{i,s}$$

Lattice 2015 -- July 17, 2015 (7)

## Six contributions to $\Delta M_K$ and $\varepsilon_K$

• Six types of diagram:



$$\lambda_i \lambda_j = \lambda_t \lambda_t, \ \lambda_u \lambda_u$$
 and  $\lambda_t \lambda_u$ 

- $\Delta M_K$ :  $\lambda_u \lambda_u$  term
- $\varepsilon_{K}$ :  $\lambda_{t} \lambda_{t}$  and  $\lambda_{u} \lambda_{t}$  term

 $\lambda_{u} \lambda_{t}$  Box diagram



- Enhanced by  $\lambda_u / \lambda_t \sim 10^3$
- Suppressed by  $(m_c/m_t)^2 \sim 4.5 \times 10^{-5}$
- Long distance contributes ~ 4% to  $\varepsilon_K$

### **Lattice Version**

• Evaluate standard, Euclidean,  $2^{nd}$  order  $K^0 - \overline{K^0}$  amplitude:

$$\mathcal{A} = \langle 0 | T \left( K^{0}(t_{f}) \frac{1}{2} \int_{t_{a}}^{t_{b}} dt_{2} \int_{t_{a}}^{t_{b}} dt_{1} H_{W}(t_{2}) H_{W}(t_{1}) K^{0}(t_{i}) \right) | 0 \rangle$$



Lattice 2015 -- July 17, 2015 (10)

#### **Interpret Lattice Result**

$$A = N_{K}^{2} e^{-M_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{M_{K}-E_{n}} \left( -(t_{b}-t_{a}) - \frac{1}{M_{K}-E_{n}} + \frac{e^{(M_{K}-E_{n})(t_{b}-t_{a})}}{M_{K}-E_{n}} \right)$$
1.  $\Delta m_{K}^{FV}$ 
4. Uninteresting constant
3.

- 3. Growing or decreasing exponential: states with  $E_n < m_K$  must be removed!
- Finite volume correction:

$$M_{K_L} - M_{K_S} = 2 \sum_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n} - 2 \frac{d(\phi + \delta_0)}{dk} \Big|_{m_K} |\langle n_0 | H_W | K^0 \rangle|^2 \cot(\phi + \delta_0) \Big|_{M_K}$$
(N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda, (Phys.Rev. D91  
(2015) 11, 114510 [arXiv:1504.01170]) Lattice 2015 -- July 17, 2015 (11)

## $\Delta S = 1$ , four-flavor operators

• Choose appropriate  $N_f = 4$  effective Hamiltonian:

$$H_{W}^{\Delta S=1;\Delta C=\pm 1,0} = \frac{G_{F}}{\sqrt{2}} \left\{ \sum_{q,q'=u,c} V_{q's}^{*} V_{qd} \sum_{i=1}^{2} C_{i} Q_{i}^{q'q} + V_{ts}^{*} V_{td} \sum_{i=3}^{6} C_{i} Q_{i} \right\}$$

$$Q_{1}^{q'q} = (\overline{s}_{i}q'_{j})_{V-A} (\overline{q}_{j}d_{i})_{V-A}$$

$$Q_{2}^{q'q} = (\overline{s}_{i}q'_{i})_{V-A} (\overline{q}_{j}d_{j})_{V-A}$$

$$Q_{3} = (\overline{s}_{i}d_{i})_{V-A} \sum_{q=u,d,s,c} (\overline{q}_{j}q_{j})_{V-A}$$

$$Q_{4} = (\overline{s}_{i}d_{j})_{V-A} \sum_{q=u,d,s,c} (\overline{q}_{j}q_{j})_{V-A}$$

$$Q_{5} = (\overline{s}_{i}d_{i})_{V-A} \sum_{q=u,d,s,c} (\overline{q}_{j}q_{j})_{V+A}$$

$$Q_{6} = (\overline{s}_{i}d_{j})_{V-A} \sum_{q=u,d,s,c} (\overline{q}_{j}q_{i})_{V+A}$$

Lattice 2015 -- July 17, 2015 (12)

## **Diagrams for** $\lambda_t \lambda_u$ **contribution to** $\varepsilon_K$

#### • Identify five types of diagrams



Lattice 2015 -- July 17, 2015 (13)

## **Correcting short distance part**





- Add  $E_{ij}(\mu) \left(\overline{s}\gamma^{\nu}(1-\gamma^5)d\right) \left(\overline{s}\gamma^{\nu}(1-\gamma^5)d\right)$
- Evaluate off-shell Green's function at  $p_i^2 = \mu^2$
- Forces internal momentum also to the scale  $\mu$  or greater
- $\mu$  must obey:
  - $\alpha_S(\mu^2) \ll 1$  so perturbation theory is accurate.
  - $a \mu \ll 1$  to avoid lattice artifacts.

## **Simulation details**

- Use  $24^3 \times 64$ , 1/a = 1.73 GeV ensemble
- $m_{\pi}$ = 329 MeV,  $m_{K}$ = 575 MeV,  $m_{c}$  = 941 MeV (0.363/a)
- Average over 64 separate, time-translated measurements on 200 configurations.
- Use low-mode deflation with 300 Lanczos eigenvectors
- Study 1.4 GeV  $\leq \mu \leq 2.6$  GeV

## **Short-distance lattice correction**

• Results for short-distance coefficient  $E_{11}$  and  $E_{22}$  of  $O_{LL}$  for the products  $Q_1Q_1$  and  $Q_2Q_2$ :



• Effect of a cutoff radius |x - y| < R at  $\mu = 1.93$  GeV

| Cutoff                | 3      | 4      | 5      | 6      | none   |
|-----------------------|--------|--------|--------|--------|--------|
| $E_{11}^{\text{lat}}$ | 0.1462 | 0.1501 | 0.1493 | 0.1489 | 0.1489 |
| $E_{22}^{\text{lat}}$ | 0.0418 | 0.0427 | 0.0425 | 0.0425 | 0.0425 |

Lattice 2015 -- July 17, 2015 (16)

## **Integrated Correlators**

Preliminary

 $\langle \overline{K^0} | \int_0^T dt_2 \int_0^T dt_1 T \Big\{ Q_i(t_1) Q_j(t_2) \Big\} | K^0 \rangle$ 



# Combine short(PT)- and long(lattice)-distance partsPreliminary

• Use C. Lehner's *PhySyHCA1* to add back the correct perturbative short distance part at LO.

| $\mu ~({ m GeV})$ | Im $M_{0\bar{0}}^{ut,ld}$ (10 <sup>-15</sup> MeV) | ${\rm Im} M^{ut,cont}_{0\bar{0}}~(10^{-15}~{\rm MeV})$ | Im $M_{00}^{ut}$ (10 <sup>-15</sup> MeV) |
|-------------------|---------------------------------------------------|--------------------------------------------------------|------------------------------------------|
| 1.54              | -0.871(30)                                        | -4.772(56)                                             | -5.642(64)                               |
| 1.92              | -1.065(30)                                        | -4.546(54)                                             | -5.601(62)                               |
| 2.11              | -1.151(31)                                        | -4.435(52)                                             | -5.586(61)                               |
| 2.31              | -1.226(31)                                        | -4.350(51)                                             | -5.576(60)                               |
| 2.56              | -1.302(30)                                        | -4.208(50)                                             | -5.511(58)                               |

• Result: tt  $ut_{sd}$   $ut_{ld}$   $Im(A_0)$   $|\mathcal{E}_K| = (1.806 + 0.892 + 0.209(6) + 0.111) \times 10^{-3} \leftarrow$   $= 3.019(45) \times 10^{-3}$  0.097 naïve PT  $(2.228(11) \times 10^{-3} \text{ expt.})$ 

Lattice 2015 -- July 17, 2015 (18)

## Outlook

- Long-distance component of  $\varepsilon_K$  will be important when  $V_{cb}$  becomes better known.
- Accessible to lattice QCD.
- Controlled, 15-20% errors should be possible in ~2-3 years, with  $1/a \ge 3$  GeV ensembles.
- Perturbative calculation of short distance part needed. (Use Pauli-Villars rather than Rome-Southampton methods? Xu Feng)