V.V. Braguta^{1,2}, A.Yu. Kotov³, <u>A.A. Nikolaev²</u>, S.N. Valgushev³

¹IHEP, Protvino, Russia

²FEFU, Vladivostok, Russia

³ITEP, Moscow, Russia

Lattice 2015

17.07.2015

(ロ) (型) (E) (E) (E) (O)

Outline

Introduction

Two-color QCD formulation

・ロト ・四ト ・ヨト ・ヨー うへぐ

Results

Conclusions

Introduction

└─ QCD phase diagram

Why do we need to study the QCD phase diagram?

QCD phase diagram is important for HEP, particle physics and astrophysics. But at the moment we can not directly study it in LQCD at finite density due to the sign problem.

Introduction

 $\square QC_2D$ phase diagram

Why do we need to study the QC_2D phase diagram?

Two-color QCD has no sign problem and its phase diagram resembles the QCD phase diagram. We can study this simpler theory in order to understand qualitative features of QCD phase diagram.

Chemical Potential Picture from J. B. Kogut, D. Toublan, and D. K. Sinclair, Nucl. Phys. B 642, 181–209 (2002)

└─ Introduction └─ Sign problem: short introduction

Sign problem in QC_2D

In LQCD we have the following relation for the Dirac operator:

$$det \Big[M(\mu_q) \Big]^* = det \Big[M(-\mu_q^*) \Big],$$

but the case of SU(2) is special:

$$det \Big[M(\mu_q) \Big] = det \Big[(\tau_2 C \gamma_5)^{-1} M(\mu_q) (\tau_2 C \gamma_5) \Big] = = det \Big[M(\mu_q^*) \Big]^*,$$

where $\mathcal{C}=\gamma_2\gamma_4$.

In QC_2D at real μ_q : $det\left[M(\mu_q)\right]$ is real, $det\left[M^{\dagger}(\mu_q)M(\mu_q)\right] > 0$ at $m_q \neq 0$.

Introduction

Previous and ongoing studies

Previous and ongoing lattice studies of QC_2D at $\mu_q eq 0$

- N_f = 8, staggered fermions, no rooting:
 S. Hands, J. B. Kogut, M. P. Lombardo, S. E. Morrison, Nucl. Phys. B 558, 327-346 (1999);
- N_f = 4, staggered fermions with rooting:
 J. B. Kogut, D. Toublan, and D. K. Sinclair, Phys.Lett. B514, 77-87 (2001);
 I. B. Kogut, D. Toublan, and D. K. Sinclair, Nucl. Phys. B
 - J. B. Kogut, D. Toublan, and D. K. Sinclair, Nucl. Phys. B 642, 181–209 (2002);
- N_f = 2, Wilson fermions:
 S. Cotter, P. Giudice, S. Hands, and J. I. Skullerud, Phys. Rev. D 87, 034507 (2013);
 T. Makiyama, *et al.*, arXiv:hep-lat/1502.06191 (2015);
- our study: $N_f = 2$, staggered fermions with rooting.

Two-color QCD formulation
Action and rooting

Action

We consider $N_f = 2$ of staggered fermions by using rooting:

$$Z = \int DU \, det \Big[M^\dagger(\mu_q) M(\mu_q) \Big]^{rac{1}{4}} e^{-S_G[U]},$$

where

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\Phi\textsc{-algorithm}$ and RHMC are being used in simulations.

Two-color QCD formulation

-Action and rooting

Diquark source

In QC_2D we can add diquark source to the action to study spontaneous breakdown of $U(1)_V$:

$$S_{F} = \sum_{x,y} \left[\overline{\chi}_{x} \mathcal{M}(\mu_{q})_{xy} \chi_{y} + \frac{\lambda}{2} \delta_{xy} \left(\chi^{T} \tau_{2} \chi + \overline{\chi} \tau_{2} \overline{\chi}^{T} \right) \right],$$

which modifies partition function as follows:

$$Z = \int DU det \Big[M^{\dagger}(\mu_q) M(\mu_q) + \lambda^2 \Big]^{rac{1}{4}} e^{-S_G[U]}.$$

Diquark condensate is colorless and may be measured:

$$\langle qq \rangle = \frac{1}{N_{\tau}N_{s}^{3}} \frac{\partial \left(\log Z\right)}{\partial \lambda} = \frac{2\lambda}{N_{\tau}N_{s}^{3}} \left\langle \mathsf{Tr}\left(M^{\dagger}M + \lambda^{2}\right)^{-1} \right\rangle$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Results

Lattice parameters and pion masses

Simulation details

- Unimproved action were used (we do not need improvements to scan the phase diagram)
- Preliminary simulations at non-zero temperature: $16^3 \times 6$ lattices, $m_q a = 0.01$, $\mu_q a = 0.0 \dots 0.6$, $\beta = 1.6 \dots 2.5$, $\lambda = 0$
- Scale setting and m_{π} determination:
 - $16^3 \times 32$ lattices, $m_q a = 0.01$, $\mu_q a = 0.0$, $\beta = 2.0, 2.1, 2.2$
 - $r_0 = 0.468(4)$ fm (A. Bazavov, *et al.*, PRD 85, 054503 (2012))

β	a, fm	M_{π}, MeV
2.0	0.171(4)	310(6)
2.1	0.135(2)	431(8)
2.2	0.097(1)	558(11)

Ongoing simulations:

scans in μ_q at fixed T, $16^3 \times 16...32$ lattices, $N_\sigma a \approx 1.8$ fm $m_q \approx 9$ MeV (fixed), $\mu_q = 0.0...1.0$ GeV 3 values of λ , extrapolation to $\lambda \rightarrow 0$

Results

Preliminary results

Polyakov loop

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

16³x6 lattices, ma=0.01

Results

└─Preliminary results

Chiral condensate

 $\begin{array}{c} \mu_{q}a{=}0.0 & & \\ \mu_{q}a{=}0.2 & & \\ \mu_{q}a{=}0.5 & & \\ \end{array}$ oo_{ooo} 10 Ξ ⊚ Ξ B Ξ Ξ Ξ 100 200 300 400 500 600 700 800 900 T, MeV

16³x6 lattices, ma=0.01

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Preliminary results

Baryon number density

At $\beta = 1.7$ pion mass is 110(3) MeV.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

└─ C on clusion s

Conclusions

Preliminary results:

- Increasing of the baryonic chemical potential leads to the decreasing of $\langle \overline{\psi}\psi \rangle$ and T_c ;
- In the confinement phase the dependence of n_B on μ_q is linear at $\mu_q > m_\pi/2$.

Plans for the nearest future:

- calculation of the QC_2D phase diagram $(m_q \text{ is fixed}, \lambda \rightarrow 0);$
- investigation of the diquark condensation phase at large μ_q ;
- checking of the influence of μ_q on χ_T .

└─ Final slide

Thank you for attention

The end

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?