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Solving the complex action problem with dual variables

• In general, field theories with finite chemical potential µ or a topological term have

actions S with an imaginary part, and the Boltzmann factor is not a probability:

e−S[Φ] ∈ C

• There is always a freedom to choose the variables for formulating a quantum field theory.

• Maybe it is possible to identify alternative variables such that the partition sum has only
real and positive terms?

• For several systems such an alternative representation without sign problem was found.

• These ”dual degrees of freedom” are discretized loops for matter fields and discretized

surfaces for gauge fields:

Z =
∑
{l,s}

W [l, s] , W [l, s] ∈ R+

• The Monte Carlo calculation can be done in terms of the new variables.

• Dual variables sometimes give new insight into physical mechanisms.



Examples of complex action problems solved with dual variables

• Z3 spin model with chemical potential. (PRL 2011, CPC 2012)

• Polyakov loop model with chemical potential (SU(3) spin model). (NPB 2011 & 2012)

• Z3 gauge-Higgs model with chemical potential. (PRD 2012, CPC 2013)

• Charged φ4 field at finite density (relativistic Bose gas). (NPB 2013, PLB 2013)

• U(1) gauge-Higgs model with chemical potential. (PRL 2013, CPC 2013)

• Scalar QED2 with topological term. (PoS 2014, work in preparation)

• O(N) and CP(N-1) models with chemical potential (arXiv:1507:04253 = yesterday)

• Work by S. Chandrasekharan, P. de Forcrand, M. Endres, P. Korzec, Y.D. Mercado,
A. Schmidt, U.-J. Wiese, U. Wolff ....

• 1+1-dimensional fermions with topological term and chemical potential. (NPB 2015)
=⇒ This talk

Problem: There is no generally applicable strategy for dualization.
Each class of models has to be attacked individually.



1+1-dimensional massless fermions on the lattice

• Partition sum and lattice action: (µ 6= 0 ⇒ 2 flavors)

Z =

∫
D[U ]D[ψ, ψ ] e−SF [U,ψ,ψ]−SG[U ]− i θ Q[U ]

SF =
1

2

∑
n,ν

γν(n)
[
e+µ δν,2 Uν(n)ψ(n)ψ(n+ ν̂) − e−µ δν,2 Uν(n)∗ ψ(n+ ν̂)ψ(n)

]

SG[U ] + i θ Q[U ] = − β
2

∑
n

[Up(n) + Up(n)∗ ] +
θ

4π

∑
n

[Up(n) − Up(n)∗ ]

• For gauge groups containing −1 the staggered signs γν(n) can be absorbed in the links:

Uν(n) → γν(n)Uν(n) , Up(n) → −Up(n) , D[U ] → D[U ]

Staggered γν(n) removed from SF . Sign of β and θ is flipped. Works also in 4D.



Expanding the fermionic partition sum (µ = 0 here)

• Expanding the Boltzmann factors turns ZF into a sum of configurations
of occupation numbers kν(n), kν(n)∈ {0, 1}:

ZF [U ] =

∫
D[ψ, ψ ]

∏
n,ν

e−
1
2
Uν(n)ψ(n)ψ(n+ν̂)e+ 1

2
Uν(n)∗ ψ(n+ν̂)ψ(n)

=

∫
D[ψ, ψ ]

∏
n,ν

1∑
kν(n),kν(n)=0

[
−Uν(n)

2
ψ(n)ψ(n+ν̂)

]kν(n)[
Uν(n)∗

2
ψ(n+ν̂)ψ(n)

]kν(n)

=
∑
{k,k}

∏
n,ν

(−1)kν(n)

2 kν(n)+kν(n)
Uν(n)kν(n)−kν(n) S[k, k]

• Remaining Grassmann integral gives zero or a sign:

S[k, k] =

∫
D[ψ, ψ ]

∏
n,ν

(
ψ(n)ψ(n+ν̂)

)kν(n) (
ψ(n+ν̂)ψ(n)

)kν(n)



Admissible fermion configurations

Nontrivial S[k, k] only for configurations of the kν(n), kν(n) where each ψ(n) and ψ(n) is
activated exactly once. ⇒ Complete filling of the lattice with closed loops and dimers.



Fermionic partition sum

• The fermionic partition sum is thus a sum over configurations {l, d} of loops and dimers:

ZF [U ] =

(
1

2

)V ∑
{l,d}

(−1)NL (−1)
1
2

P
l L(l) (−1)

P
lW (l)

∏
l

∏
(n,ν)∈l

Uν(n)sν(n)

NL ..... number of loops

L(l) ..... length of the loop l

W (l) ..... winding number of the loop l around compact time

sν(n) ..... occupation number of a link in a loop (sν(n) ∈ {−1,+1})

• The loops are dressed with link variables which have to be integrated over. Since ...

∫
dUν(n) [Uν(n)]j = δj,0

... the link variables on the loops have to be compensated with plaquettes from the
expansion of the Boltzmann factor with the gauge action.



Expansion of the Boltzmann factor of the gauge action:

• Factorization of the gauge action Boltzmann factor as product over plaquettes:

e−SG[U ]− iθQ[U ] = e−
P
n [η Up(n)+ η Up(n)∗] =

∏
n

e− η Up(n) e− η Up(n)−1

η ≡ β

2
− θ

4π
, η ≡ β

2
+

θ

4π

• Expansion of the individual exponentials:

e− η Up(n) e− η Up(n)−1

=
∑
p(n)∈Z

(−1)p(n) I|p(n)|

(√
ηη
) (√η

η

)p(n)

Up(n) p(n)

p(n) ∈ Z .... plaquette occupation numbers

I|p(n)|(
√
ηη ) .... modified Bessel functions



Saturation of the link variables:

Example how link variables along the loops are saturated with flux from the plaquettes:
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Dual form of the partition sum:

• The partition function is a sum over all admissible configurations of loops l, dimers d
and plaquette occupation numbers p:

Z =

(
1

2

)V ∑
{l,d,p}

(−1)NL+NP + 1
2

P
l L(l)

∏
n

I|p(n)|

(√
ηη
) (√η

η

)p(n)

Here we have introduced the total plaquette occupation number: NP =
∑

n p(n)

• The dual representation is an exact mapping. Left to show:

(−1)NL+NP + 1
2

P
l L(l) = 1 ∀ admissible configurations

• Proof in two steps: (NPB 897 (2015) 732 [arXiv:1503.05479])

1. Factorization theorem: → Sign is product of signs for configs with a single loop.

2. Admissible configs with a single loop are analyzed with a recursive construction.



Dual representation of massless 1+1-dimensional fermions with θ-term:

• Partition function is a sum over admissible configurations of loops, dimers
and plaquette occupation numbers:

Z =

(
1

2

)V ∑
{l,d,p}

∏
n

I|p(n)|

(√
ηη
) (√η

η

)p(n)

• Fermion loops that wind forward (backward) in time are weighted with e+µNt ( e−µNt)

• The partition sum has only real and positive terms for positive η = β
2
− θ

4π
and η = β

2
+ θ

4π
.

• Monte Carlo calculations can be done directly in terms of the dual variables.

• Bulk observables are obtained as derivatives with respect to the parameters.
For correlators one can introduce local sources.

Mass 6= 0 ⇒ signs are back!!



Generalization: Nanowires in a 3+1-dimensional electromagnetic field:

• The dual mapping can be generalized to a system of straight nanowires of fermions
with a relativistic dispersion relation. (work in preparation)

• Each nanowire gives rise to effectively 1+1-dimensional fermions in the t-xj plane, with
the other two spatial coordinates xk, k 6= j fixed.

• The steps of the dualization for each t-xj plane are identical to the 1+1 case:

– Absorb the staggered signs and flip the gauge coupling β.

– Integrate out the Grassmann fields in the corresponding plane.
⇒ Same algebra and thus the same signs from fermions.

• Integrating out the 4-dimensional gauge fields can be done in 2 steps:

– In a first step, in each plane one uses only the plaquettes that fall into this plane.
This gives rise to a positive overall sign (same proof as in 2d).

– All other contributions from gauge fields do not change the sign since all
deformations of surfaces contribute an even number of plaquettes.

– Overall positive sign for the dual representation.



Nanowires in a 3+1-dimensional electromagnetic field:

Partition function has an additional product over all wires and uses 4-d plaquette surfaces:

Z =
Nw∏
j=1

∑
{lj , dj}

eNt
P
j µjWj

∑
{p}

∏
n

∏
σ<τ

I|pσ,τ (n)|(β/2)

Wj ..... total winding winding number of the loops lj around compact time

Real and positive dual representation at arbitrary chemical potentials.



Summary

• Rewriting lattice field theories to dual variables can solve the complex action problem.

• Two sources of complex action: chemical potential and topological term.

• For massless 1+1-dimensional fermions the partition sum can be mapped to a dual
representation with only real and positive terms.

• The dual variables are fermion loops and dimers and the corresponding plaquette
occupation numbers.

• Positivity of the weights comes from interplay of fermion properties and
the gauge interaction.

• First example of a complete (large β, µ 6= 0, θ 6= 0) positive dualization of
fermions interacting with a gauge field. Mass 6= 0 ⇒ signs are back!!

• The proof of positivity generalizes to nanowires interacting with 4-d U(1) gauge fields.

• Dualized models provide excellent reference data for testing your own favorite approach
to complex action problems.


