Dual representation for massless $1+1$-dimensional fermions with chemical potential and $U(1)$ gauge fields

christof.gattringer@uni-graz.at

Solving the complex action problem with dual variables

- In general, field theories with finite chemical potential μ or a topological term have actions S with an imaginary part, and the Boltzmann factor is not a probability:

$$
e^{-S[\Phi]} \in \mathbb{C}
$$

- There is always a freedom to choose the variables for formulating a quantum field theory.
- Maybe it is possible to identify alternative variables such that the partition sum has only real and positive terms?
- For several systems such an alternative representation without sign problem was found.
- These "dual degrees of freedom" are discretized loops for matter fields and discretized surfaces for gauge fields:

$$
Z=\sum_{\{l, s\}} W[l, s] \quad, \quad W[l, s] \in \mathbb{R}_{+}
$$

- The Monte Carlo calculation can be done in terms of the new variables.
- Dual variables sometimes give new insight into physical mechanisms.

Examples of complex action problems solved with dual variables

- \mathbb{Z}_{3} spin model with chemical potential. (PRL 2011, CPC 2012)
- Polyakov loop model with chemical potential (SU(3) spin model). (NPB 2011 \& 2012)
- \mathbb{Z}_{3} gauge-Higgs model with chemical potential. (PRD 2012, CPC 2013)
- Charged ϕ^{4} field at finite density (relativistic Bose gas). (NPB 2013, PLB 2013)
- $U(1)$ gauge-Higgs model with chemical potential. (PRL 2013, CPC 2013)
- Scalar QED 2 with topological term. (PoS 2014, work in preparation)
- $\mathrm{O}(\mathrm{N})$ and $\mathrm{CP}(\mathrm{N}-1)$ models with chemical potential (arXiv:1507:04253 $=$ yesterday)
- Work by S. Chandrasekharan, P. de Forcrand, M. Endres, P. Korzec, Y.D. Mercado, A. Schmidt, U.-J. Wiese, U. Wolff
- 1+1-dimensional fermions with topological term and chemical potential. (NPB 2015) \Longrightarrow This talk

Problem: There is no generally applicable strategy for dualization. Each class of models has to be attacked individually.

1+1-dimensional massless fermions on the lattice

- Partition sum and lattice action: $(\mu \neq 0 \Rightarrow 2$ flavors $)$

$$
\begin{gathered}
Z=\int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] e^{-S_{F}[U, \bar{\psi}, \psi]-S_{G}[U]-i \theta Q[U]} \\
S_{F}=\frac{1}{2} \sum_{n, \nu} \gamma_{\nu}(n)\left[e^{+\mu \delta_{\nu, 2}} U_{\nu}(n) \bar{\psi}(n) \psi(n+\hat{\nu})-e^{-\mu \delta_{\nu, 2}} U_{\nu}(n)^{*} \bar{\psi}(n+\hat{\nu}) \psi(n)\right] \\
S_{G}[U]+i \theta Q[U]=-\frac{\beta}{2} \sum_{n}\left[U_{p}(n)+U_{p}(n)^{*}\right]+\frac{\theta}{4 \pi} \sum_{n}\left[U_{p}(n)-U_{p}(n)^{*}\right]
\end{gathered}
$$

- For gauge groups containing $-\mathbb{1}$ the staggered signs $\gamma_{\nu}(n)$ can be absorbed in the links:

$$
U_{\nu}(n) \rightarrow \gamma_{\nu}(n) U_{\nu}(n) \quad, \quad U_{p}(n) \rightarrow-U_{p}(n) \quad, \quad \mathcal{D}[U] \rightarrow \mathcal{D}[U]
$$

Staggered $\gamma_{\nu}(n)$ removed from S_{F}. Sign of β and θ is flipped. Works also in 4D.

Expanding the fermionic partition sum ($\mu=0$ here)

- Expanding the Boltzmann factors turns Z_{F} into a sum of configurations of occupation numbers $k_{\nu}(n), \bar{k}_{\nu}(n) \in\{0,1\}$:

$$
\begin{aligned}
Z_{F}[U] & =\int \mathcal{D}[\bar{\psi}, \psi] \prod_{n, \nu} e^{-\frac{1}{2} U_{\nu}(n) \bar{\psi}(n) \psi(n+\hat{\nu})} e^{+\frac{1}{2} U_{\nu}(n)^{*} \bar{\psi}(n+\hat{\nu}) \psi(n)} \\
& =\int \mathcal{D}[\bar{\psi}, \psi] \prod_{n, \nu} \sum_{k_{\nu}(n), \bar{k}_{\nu}(n)=0}^{1}\left[-\frac{U_{\nu}(n)}{2} \bar{\psi}(n) \psi(n+\hat{\nu})\right]^{k_{\nu}(n)}\left[\frac{U_{\nu}(n)^{*}}{2} \bar{\psi}(n+\hat{\nu}) \psi(n)\right]^{\bar{k}_{\nu}(n)} \\
& =\sum_{\{k, \bar{k}\}} \prod_{n, \nu} \frac{(-1)^{k_{\nu}(n)}}{2^{k_{\nu}(n)+\bar{k}_{\nu}(n)}} U_{\nu}(n)^{k_{\nu}(n)-\bar{k}_{\nu}(n)} S[k, \bar{k}]
\end{aligned}
$$

- Remaining Grassmann integral gives zero or a sign:

$$
S[k, \bar{k}]=\int \mathcal{D}[\bar{\psi}, \psi] \prod_{n, \nu}(\bar{\psi}(n) \psi(n+\hat{\nu}))^{k_{\nu}(n)}(\bar{\psi}(n+\hat{\nu}) \psi(n))^{\bar{k}_{\nu}(n)}
$$

Admissible fermion configurations

Nontrivial $S[k, \bar{k}]$ only for configurations of the $k_{\nu}(n), \bar{k}_{\nu}(n)$ where each $\psi(n)$ and $\bar{\psi}(n)$ is activated exactly once. \Rightarrow Complete filling of the lattice with closed loops and dimers.

Fermionic partition sum

- The fermionic partition sum is thus a sum over configurations $\{l, d\}$ of loops and dimers:

$$
Z_{F}[U]=\left(\frac{1}{2}\right)^{V} \sum_{\{l, d\}}(-1)^{N_{L}}(-1)^{\frac{1}{2} \sum_{l} L(l)}(-1)^{\sum_{l} W(l)} \prod_{l} \prod_{(n, \nu) \in l} U_{\nu}(n)^{s_{\nu}(n)}
$$

$N_{L} \quad$..... number of loops
$L(l) \quad$..... length of the loop l
$W(l) \quad$..... \quad winding number of the loop l around compact time
$s_{\nu}(n) \quad \ldots . . \quad$ occupation number of a link in a loop $\left(s_{\nu}(n) \in\{-1,+1\}\right)$

- The loops are dressed with link variables which have to be integrated over. Since ...

$$
\int d U_{\nu}(n)\left[U_{\nu}(n)\right]^{j}=\delta_{j, 0}
$$

... the link variables on the loops have to be compensated with plaquettes from the expansion of the Boltzmann factor with the gauge action.

- Factorization of the gauge action Boltzmann factor as product over plaquettes:

$$
\begin{aligned}
e^{-S_{G}[U]-i \theta Q[U]}=e^{-\sum_{n}\left[\eta U_{p}(n)+\bar{\eta} U_{p}(n)^{*}\right]} & =\prod_{n} e^{-\eta U_{p}(n)} e^{-\bar{\eta} U_{p}(n)^{-1}} \\
\eta & \equiv \frac{\beta}{2}-\frac{\theta}{4 \pi}, \quad \bar{\eta} \equiv \frac{\beta}{2}+\frac{\theta}{4 \pi}
\end{aligned}
$$

- Expansion of the individual exponentials:

$$
e^{-\eta U_{p}(n)} e^{-\bar{\eta} U_{p}(n)^{-1}}=\sum_{p(n) \in \mathbb{Z}}(-1)^{p(n)} I_{|p(n)|}(\sqrt{\eta \bar{\eta}})\left(\sqrt{\frac{\eta}{\bar{\eta}}}\right)^{p(n)} U_{p}(n)^{p(n)}
$$

$p(n) \in \mathbb{Z} \quad$.... \quad plaquette occupation numbers
$I_{|p(n)|}(\sqrt{\eta \bar{\eta}}) \quad$.... modified Bessel functions

Saturation of the link variables:

Example how link variables along the loops are saturated with flux from the plaquettes:

Dual form of the partition sum:

- The partition function is a sum over all admissible configurations of loops l, dimers d and plaquette occupation numbers p :

$$
Z=\left(\frac{1}{2}\right)^{V} \sum_{\{l, d, p\}}(-1)^{N_{L}+N_{P}+\frac{1}{2} \sum_{l} L(l)} \prod_{n} I_{|p(n)|}(\sqrt{\eta \bar{\eta}})\left(\sqrt{\frac{\eta}{\bar{\eta}}}\right)^{p(n)}
$$

Here we have introduced the total plaquette occupation number: $N_{P}=\sum_{n} p(n)$

- The dual representation is an exact mapping. Left to show:

$$
(-1)^{N_{L}+N_{P}+\frac{1}{2} \sum_{l} L(l)}=1 \quad \forall \text { admissible configurations }
$$

- Proof in two steps: (NPB 897 (2015) 732 [arXiv:1503.05479])

1. Factorization theorem: \rightarrow Sign is product of signs for configs with a single loop.
2. Admissible configs with a single loop are analyzed with a recursive construction.

Dual representation of massless $1+1$-dimensional fermions with θ-term:

- Partition function is a sum over admissible configurations of loops, dimers and plaquette occupation numbers:

$$
Z=\left(\frac{1}{2}\right)^{V} \sum_{\{l, d, p\}} \prod_{n} I_{|p(n)|}(\sqrt{\eta \bar{\eta}})\left(\sqrt{\frac{\eta}{\bar{\eta}}}\right)^{p(n)}
$$

- Fermion loops that wind forward (backward) in time are weighted with $e^{+\mu N_{t}}\left(e^{-\mu N_{t}}\right)$
- The partition sum has only real and positive terms for positive $\eta=\frac{\beta}{2}-\frac{\theta}{4 \pi}$ and $\bar{\eta}=\frac{\beta}{2}+\frac{\theta}{4 \pi}$.
- Monte Carlo calculations can be done directly in terms of the dual variables.
- Bulk observables are obtained as derivatives with respect to the parameters. For correlators one can introduce local sources.

Generalization: Nanowires in a 3+1-dimensional electromagnetic field:

- The dual mapping can be generalized to a system of straight nanowires of fermions with a relativistic dispersion relation. (work in preparation)
- Each nanowire gives rise to effectively $1+1$-dimensional fermions in the $t-x_{j}$ plane, with the other two spatial coordinates $x_{k}, k \neq j$ fixed.
- The steps of the dualization for each $t-x_{j}$ plane are identical to the $1+1$ case:
- Absorb the staggered signs and flip the gauge coupling β.
- Integrate out the Grassmann fields in the corresponding plane. \Rightarrow Same algebra and thus the same signs from fermions.
- Integrating out the 4-dimensional gauge fields can be done in 2 steps:
- In a first step, in each plane one uses only the plaquettes that fall into this plane. This gives rise to a positive overall sign (same proof as in 2 d).
- All other contributions from gauge fields do not change the sign since all deformations of surfaces contribute an even number of plaquettes.
- Overall positive sign for the dual representation.

Nanowires in a 3+1-dimensional electromagnetic field:

Partition function has an additional product over all wires and uses 4-d plaquette surfaces:

$$
Z=\prod_{j=1}^{N_{w}} \sum_{\left\{l_{j}, d_{j}\right\}} e^{N_{t} \sum_{j} \mu_{j} W_{j}} \sum_{\{p\}} \prod_{n} \prod_{\sigma<\tau} I_{\left|p_{\sigma, \tau}(n)\right|}(\beta / 2)
$$

$W_{j} \ldots$. total winding winding number of the loops l_{j} around compact time

Real and positive dual representation at arbitrary chemical potentials.

- Rewriting lattice field theories to dual variables can solve the complex action problem.
- Two sources of complex action: chemical potential and topological term.
- For massless $1+1$-dimensional fermions the partition sum can be mapped to a dual representation with only real and positive terms.
- The dual variables are fermion loops and dimers and the corresponding plaquette occupation numbers.
- Positivity of the weights comes from interplay of fermion properties and the gauge interaction.
- First example of a complete (large $\beta, \mu \neq 0, \theta \neq 0$) positive dualization of fermions interacting with a gauge field. Mass $\neq 0 \Rightarrow$ signs are back!!
- The proof of positivity generalizes to nanowires interacting with 4-d $U(1)$ gauge fields.
- Dualized models provide excellent reference data for testing your own favorite approach to complex action problems.

