Nuclear Parity Violation from Lattice QCD

Thorsten Kurth, Evan Berkowitz, Raul Briceno, Amy Nicholson, Enrico Rinaldi, Mark Strother, Pavlos Vranas, Andre Walker-Loud

Lattice 2015
Kobe, July 132015

Jefferson Lab
OThomas Jefferson National Accelerator Facility

Motivation I

(2) GWS model of electroweak interaction is huge success
(0) flavour changing charged current is well understood from precision measurements in collider experiments:

$$
\begin{aligned}
J_{\mu}^{+} & =\cos \theta_{C} \bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) d+\sin \theta_{C} \bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) s \\
H_{\mathrm{ew}-\mathrm{eff}}^{C C, \Delta S=0} & =\frac{G_{F}}{\sqrt{2}} J_{\mu}^{+\dagger} J^{+\mu}+\text { h.c. }
\end{aligned}
$$

- vector boson d.o.f. are integrated out
- effective Hamiltonian has isospin changing $\Delta I=0,1,2$ interactions
- $\Delta I=1$ component is suppressed by $\sin ^{2} \theta_{C} \sim 0.04$
$\Rightarrow \Delta I=0,2$ transitions strongly dominate EW CC interaction
() $\Delta I=1$ interaction is good probe for parity violating neutral current/hadronic neutral current (HNC)

Motivation II

(1) flavour conserving neutral current is given by

$$
\begin{aligned}
J_{\mu}^{0} & =\bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) u-\bar{d} \gamma_{\mu}\left(1+\gamma_{5}\right) d-4 \sin ^{2} \theta_{W} J_{\mu}^{\mathrm{em}} \\
H_{\mathrm{ew-eff}}^{N C} & =\frac{G_{F}}{2 \sqrt{2}} J_{\mu}^{0 \dagger} J^{0 \mu}+\text { h.c. }
\end{aligned}
$$

- Effective Hamiltonian generates $\Delta I=0,1,2$ interactions
- no perturbative argument for enhancement/suppression of some components
(1) hard to measure in collider experiments because it allows no FC
(1) HNC least constrained observable in the Standard Model
(2) nuclear systems perfect testbed for studying HNC
(1) challenge: EW effects suppressed by $G_{F} F_{\pi}^{2} \sim \mathcal{O}\left(10^{-7}\right) \mathrm{w} /$ respect to strong interaction

Motivation III

(1) some systems alleviate that constraint due to nearly-degenerate energy levels w/ opposite parity, but those have large A
\Rightarrow hard to control systematic uncertainties due to nuclear ME
(1) small nuclear systems have better controlled systematics
(1) ongoing experimental effort by NPDGamma at SNS (ORNL), measuring asymmetry in $n p \rightarrow d \gamma$ with predicted sensitivity of $\mathcal{O}\left(10^{-8}\right)$
(Alarcon, Balascuta [Hyperfine Interact. 214, 149])
(1) good understanding of QCD corrections is required

Lattice Calculation of NPV

(1) focus on local isotensor operator

$$
\mathcal{O}^{\Delta I=2}(\mathbf{p}=0)=\sum_{\mathbf{x}, \mu}\left(\bar{q} \gamma_{\mu} \gamma_{5} \tau^{+} q\right)(\mathbf{x}) \otimes\left(\bar{q} \gamma^{\mu} \tau^{+} q\right)(\mathbf{x})
$$

(1) ME can be related to coupling h_{ρ}^{2}
() why not $\Delta I=0,1$?

- no disconnected diagrams (isospin limit)

$$
\Delta I=0,1,2
$$

$\Delta I=0,1$

- no mixing under renormalization (in absence of QED)

$\Delta I=0$

(Tiburzi [1207.4996])

(1) evaluate this operator in $n n \rightarrow p p$ channel

- reduces number of diagrams significantly

Interpolating Operators I

(1) process $\langle p p| \mathcal{O}^{\Delta I=2}|n n\rangle$ is PV and thus changes orbital angular momentum \Rightarrow need to compute $\left\langle p p\left({ }^{3} P_{0}\right)\right| \mathcal{O}^{\Delta I=2}\left|n n\left({ }^{1} S_{0}\right)\right\rangle$
(1) good operators for projecting onto S-wave (easy) and P-wave necessary (more involved) (Luu, Savage [1101.3347])
(0) a) create non-local operators with $\ell, m_{\ell}, s, m_{s} \mathrm{QN}$

$$
\begin{aligned}
\left\langle\mathbf{x}_{0} \mid \ell, m_{\ell} ; s, m_{s}\right\rangle & \equiv(\bar{N} \bar{N})_{\ell, s}^{m_{\ell}, m_{s}}\left(\mathbf{x}_{0}\right) \\
& =\sum_{\{\Delta \mathbf{x}\}, \alpha, \beta} Y_{\ell}^{m_{\ell}}(\widehat{\Delta \mathbf{x}}) \cdot \bar{N}_{\alpha}\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \bar{N}_{\beta}\left(\mathbf{x}_{0}\right) \cdot \Gamma_{\alpha \beta}^{s, m_{s}}
\end{aligned}
$$

(b) project onto total angular momentum using CG coefficients

$$
\left\langle\mathbf{x}_{0} \mid j, m_{j}\right\rangle=\sum_{\ell, m_{\ell}, s, m_{s}} \operatorname{CG}\left(j, m_{j} ; \ell, m_{\ell} ; s, m_{s}\right)(\bar{N} \bar{N})_{\ell, s}^{m_{\ell}, m_{s}}\left(\mathbf{x}_{0}\right)
$$

(1) c) subduce result onto cubic irreps (Dudek et al. [1004.4930])

$$
\left\langle\mathbf{x}_{0} \mid \Lambda, \mu\right\rangle \equiv(\bar{N} \bar{N})_{\Lambda}^{\mu}\left(\mathbf{x}_{0}\right)=\sum_{j, m_{j}} \operatorname{CG}\left(\Lambda, \mu ; j, m_{j}\right)\left\langle\mathbf{x}_{0} \mid j, m_{j}\right\rangle
$$

Interpolating Operators II

(7) use local single-nucleon-interpolators (Basak et al., [hep-lat/050801])
(1) corner topology $\left(\Delta \mathbf{x}^{2} \propto 3\right)$ for $A_{1}^{+}\left(\sim{ }^{1} S_{0}\right)$ and $A_{1}^{-}\left(\sim{ }^{3} P_{0}\right)$

(1) successfully used in our higher PW nn-scattering calculation \Rightarrow Amy's talk, Wed. 07/15, 3 PM, Had. Spec. Int.

Interpolating Operators III

(1) optimal sources/sink defined in p-space \Rightarrow would require all-to-all propagators (or stochastic $\mathcal{O}^{\Delta I}$ projection) $\Rightarrow \mathbf{x}$-space sources/sinks
(1) stochastic projection to zero cms momentum

$$
(\bar{N} \bar{N})_{\Lambda}^{\mu}(\mathbf{P}=0) \approx \sum_{\left\{\mathbf{x}_{0}\right\} \in \mathrm{QMC}(\text { latt })}(\bar{N} \bar{N})_{\Lambda}^{\mu}\left(\mathbf{x}_{0}\right)
$$

(1) x-space sources/sinks have overlaps with A_{1}^{+}and A_{1}^{-}ground states

(1) x-space setup reduces cost for contractions

Contractions

() setup:

- A_{1}^{+}source at t_{i}
- A_{1}^{-}sink at t_{f}
- τ varies between t_{i}, t_{f}
(3) use unified contraction method at source and sink (Doi, Endres
(2) factor out 4-quark-object and propagators connecting blocks and EW insertion \Rightarrow skeleton-method

[^0]
Contractions

() setup:

- A_{1}^{+}source at t_{i}
- A_{1}^{-}sink at t_{f}
- τ varies between t_{i}, t_{f}
() use unified contraction method at source and sink (Doi, Endres
[1205.0585], Detmold, Orginos [1207.1452])
(2) factor out 4-quark-object and propagators connecting blocks and EW insertion \Rightarrow skeleton-method

(1) additionally: reverse process by swapping interpretation of
source and sink

Contractions

(1) setup:

- A_{1}^{+}source at t_{i}
- A_{1}^{-}sink at t_{f}
- τ varies between t_{i}, t_{f}
() use unified contraction method at source and sink (Doi, Endres [1205.0585], Detmold, Orginos [1207.1452])
(0) factor out 4-quark-object and propagators connecting blocks and EW insertion \Rightarrow skeleton-method

swapping interpretation of
source and sink

Contractions

(1) setup:

- A_{1}^{+}source at t_{i}
- A_{1}^{-}sink at t_{f}
- τ varies between t_{i}, t_{f}
() use unified contraction method at source and sink (Doi, Endres
[1205.0585], Detmold, Orginos [1207.1452])
(1) factor out 4-quark-object and propagators connecting blocks and EW insertion \Rightarrow skeleton-method
(1) additionally: reverse process by
 swapping interpretation of source and sink

Calculation Details I

(calculations performed at $\sim 800 \mathrm{MeV}$ pion mass, to reduce noise in correlation functions
(1) ensemble overview: $a \sim 0.145 \mathrm{fm}, 6400$ measurements on $24^{3} \times 48$ lattice and 8×8 displacements per measurement with distance 6 , i.e.
$\Delta \mathbf{x} \propto(\pm 6, \pm 6, \pm 6)$
() no renormalization performed yet, but can be done pertubatively at our requested level of preicsion (Tiburzi [1207.4996])
(1) Lellouch-Luscher matching functions for relating finite volume ME to infinite volume counterpart has to be computed

$$
\left.\begin{array}{rl}
\left\langle p p\left({ }^{3} P_{1}\right) \mathcal{O}^{\Delta I}\right. & \left.=2 p p\left({ }^{1} S_{0}\right)\right\rangle_{V=\infty} \\
& \equiv L L\left(\delta^{{ }^{1} S_{0}}\right. \\
& \frac{\partial \delta_{{ }^{1} S_{0}}}{\partial E}, \delta^{3} P_{0}
\end{array}, \frac{\partial \delta^{3} P_{0}}{\partial E}\right)\left\langle p p\left({ }^{3} P_{1}\right) \mathcal{O}^{\Delta I=2} p p\left({ }^{1} S_{0}\right)\right\rangle_{V} .
$$

(3) we computed phase shifts for nn-scattering in P and S-wave
() all results are preliminary

Calculation Details II

(1) The bare PV amplitude is time-dependent and contains vacuum overlaps (Z-factors) which depend on the interpolating operators
() for removing all of these, compute

$$
\begin{aligned}
C_{++}(t) & \sim\left\langle A_{1}^{+}(t) \mid A_{1}^{+}(0)\right\rangle, \\
C_{--}(t) & \sim\left\langle A_{1}^{-}(t) \mid A_{1}^{-}(0)\right\rangle, \\
C_{-+}\left(t_{f}, t, t_{i}\right) & \sim\left\langle A_{1}^{-}\left(t_{f}\right)\right| \mathcal{O}^{\Delta I=2}(t)\left|A_{1}^{+}\left(t_{i}\right)\right\rangle, \\
C_{+-}\left(t_{f}, t, t_{i}\right) & \sim\left\langle A_{1}^{+}\left(t_{f}\right)\right| \mathcal{O}^{\Delta I=2}(t)\left|A_{1}^{-}\left(t_{i}\right)\right\rangle
\end{aligned}
$$

(1) compute ratio to cancel overlap factors and energy dependence

$$
R_{-+}\left(t_{f}, t, t_{i}\right)=\frac{C_{-+}\left(t_{f}, t, t_{i}\right)}{\sqrt{C_{--}\left(t_{f}-t_{i}\right) C_{++}\left(t_{f}-t_{i}\right)}} \sqrt{\frac{C_{--}\left(t_{f}-t\right) C_{++}\left(t-t_{i}\right)}{C_{++}\left(t_{f}-t\right) C_{--}\left(t-t_{i}\right)}}
$$

(1) use asymmetric subtraction to remove energy injection by $\mathcal{O}^{\Delta I=2}$

$$
R\left(t_{f}, t, t_{i}\right) \equiv \frac{1}{2}\left(R_{-+}\left(t_{f}, t, t_{i}\right)-R_{+-}\left(t_{f}, t, t_{i}\right)\right)
$$

Bare Matrix Element

(looks promising and more statistics on it's way

Phase Shifts

() energy dependence of $\delta_{1_{S_{0}}}$ determined
(0) need to augment statistics with different source topology for $\delta_{3_{P_{0}}}$
(1) need to estimate PW mixing in A_{1}^{-}

Summary

(1) hadronic neutral current least constrained observable of the SM
(2) NPDGamma is trying to improve that constraint \Rightarrow Lattice QCD can help to improve systematic uncertainties
(1) we built framework for and started calculation of nuclear parity violation in Lattice QCD
(0) obtained a signal but more statistics needed
(1) use of non-local interpolating operators necessary \Rightarrow calculation is 160 times more expensive
(1) S- and P-wave strong scattering needs to be fully understood before serious attempts for computing NPV can be made \Rightarrow we are almost there

Outlook

(1) increase statistics and finish calculation of h_{ρ}^{2} at $m_{\pi} \sim 800 \mathrm{MeV}$
() compute $L L$ factor
() investigate possibilities to compute ME for $\Delta I=1$ (difficult) and $\Delta I=0$ (very difficult)
(1) stochastic estimation of disconnected diagrams fits into skeleton decomposition approach \Rightarrow minor code changes necessary
(1) we started exploratory calculations at $m_{\pi} \sim 400 \mathrm{MeV}$

Thank You

Backup Slides

Local Interpolating Operators

(3) the use of local two-nucleon-operators would significantly reduce the cost for the calculation
(1) number of fundamental contractions would reduce from 120 to 6
(0) but: local A_{1}^{+}operator has almost no overlap with A_{1}^{+}ground state

() use of non-local two-nucleon operators mandatory
() momentum space sources and sinks would be optimal \rightarrow requires multiple momentum space sources on quark level to sample Fourier modes \rightarrow extremely expensive

[^0]: (3) additionally: reverse process by swapping interpretation of
 source and sink

