Motivation & Outline Lattice Formulation Results

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lattice simulation of the SU(2)-chiral model at zero and non-zero pion density

Tobias Rindlisbacher ¹ and Philippe de Forcrand ^{1,2}

ETHzürich Motivation

- Motivation
 - Toy model for testing methods to obtain mass spectrum from lattice simulations after rotation of vacuum as e.g. in two flavor LQCD with an isospin chemical potential for $\mu > m_{\pi}/2$.
 - Higgs field in technicolor like models.
 - Trivially extendable to O(N) (or CP^{N-1} in terms of U(1) gauged O(2N-1)).

Entraining Motivation

- Motivation
 - Toy model for testing methods to obtain mass spectrum from lattice simulations after rotation of vacuum as e.g. in two flavor LQCD with an isospin chemical potential for $\mu > m_{\pi}/2$.
 - Higgs field in technicolor like models.
 - Trivially extendable to O(N) (or CP^{N-1} in terms of U(1) gauged O(2N-1)).
- Outline
 - Derivation of flux representation partition function for SU(2)-chiral Lagrangian including an isospin chemical potential and source terms.
 - Improved method to measure arbitrary correlators during worm update.
 - Comparison of mass spectrum obtained from lattice simulations and spectrum obtained from saddle point calculation.

an zürich

Continuum Action

Minkowski space SU(2)-chiral Lagrangian:

$$\begin{split} \mathcal{L}_{\textit{eff}} &= -\frac{f_{\pi}^2}{4} \, \text{tr} \Big[\big(\partial_\nu \Sigma - \mathrm{i} \mu \delta_{\nu,0} \big(\sigma_3 \Sigma - \Sigma \sigma_3 \big) \big) \big(\partial^\nu \Sigma^\dagger - \mathrm{i} \mu \delta^{\nu,0} \big(\sigma_3 \Sigma^\dagger - \Sigma^\dagger \sigma_3 \big) \big) \Big] \\ &\quad - \frac{f_{\pi}^2}{4} \, \text{tr} \Big[\Sigma^\dagger \, \mathcal{S} + \mathcal{S}^\dagger \, \Sigma \Big], \end{split}$$

with:

$$\Sigma = \pm \sqrt{\left|1 - \frac{|\bar{\pi}|^2}{l_{\pi}^2}\right|} \mathbb{1} + i \frac{\bar{\pi} \cdot \bar{\sigma}}{l_{\pi}} \in SU(2)$$

- pion fields $\bar{\pi} = (\pi_1, \pi_2, \pi_3)$
- Pauli matrices $\bar{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$,
- $S = s_4 \mathbb{1} + i \bar{s} \bar{\sigma}$
 - pion source $\bar{s} = (s_1, s_2, s_3)$
 - scalar source $s_4 (\propto (m_u + m_d))$ with quark masses m_u, m_d
- **pion decay constant** f_{π} ,
- sospin chemical potential μ .

Motivation & Outline Lattice Formulation Results

Discretization

Wick rotate ($x^0 \rightarrow -i x_4$) corresponding action and introduce lattice spacing a:

$$S = \frac{f_{\pi}^2 a^d}{4} \sum_{x} \left\{ -\frac{1}{a^2} \sum_{\nu=1}^d \operatorname{tr} \left[\Sigma_x^{\dagger} e^{a\mu\sigma_3\delta_{\nu,d}} \Sigma_{x+\widehat{\nu}} e^{-a\mu\sigma_3\delta_{\nu,d}} + \Sigma_x^{\dagger} e^{-a\mu\sigma_3\delta_{\nu,d}} \Sigma_{x-\widehat{\nu}} e^{a\mu\sigma_3\delta_{\nu,d}} \right] \right. \\ \left. + \frac{2d}{a^2} \operatorname{tr} \left[\Sigma_x^{\dagger} \Sigma_x \right] - \operatorname{tr} \left[\Sigma_x^{\dagger} S_x + S_x^{\dagger} \Sigma_x \right] \right\}$$

with the usual substitutions:

$$\int d^{d} x_{E} \rightarrow a^{d} \sum_{x}$$

$$\partial_{v}^{E} \Sigma - \mu \delta_{v,d} (\sigma_{3} \Sigma - \Sigma \sigma_{3}) \rightarrow \frac{1}{a} (e^{a\mu\sigma_{3}\delta_{v,d}} \Sigma_{x+\hat{v}} e^{-a\mu\sigma_{3}\delta_{v,d}} - \Sigma_{x})$$

(in analogy to covariant derivative in adjoint rep.)

Motivation & Outline Lattice Formulation Results

Discretization

Rewrite in terms of dimensionless parameters / fields:

$$\begin{split} \mathcal{S}[\Sigma] &= -\kappa \sum_{x} \left\{ \frac{1}{4} \sum_{\nu=1}^{d} \text{tr} \Big[\Sigma_{x}^{\dagger} e^{\mu \sigma_{3} \delta_{\nu,d}} \Sigma_{x+\widehat{\nu}} e^{-\mu \sigma_{3} \delta_{\nu,d}} + \Sigma_{x}^{\dagger} e^{-\mu \sigma_{3} \delta_{\nu,d}} \Sigma_{x-\widehat{\nu}} e^{\mu \sigma_{3} \delta_{\nu,d}} \Big] \\ &\qquad \qquad + \text{tr} \Big[\Sigma_{x}^{\dagger} \mathcal{S}_{x} + \mathcal{S}_{x}^{\dagger} \Sigma_{x} \Big] \right\} + \text{const.}, \end{split}$$

with:

 $f_{\pi}^{2} a^{d-2} \to \kappa$ $a^{2} S_{x} \to S_{x}$

 $\blacksquare a\mu
ightarrow \mu$

 $\blacksquare \pi_i / f_{\pi} \rightarrow \pi_i$

Motivation & Outline Lattice Formulation Results

Discretization

Lattice regularized partition function:

$$Z = \int \mathcal{D}[\Sigma] \, \mathrm{e}^{-\mathcal{S}[\Sigma]}$$

with:

• $\mu_g(\Sigma)$ is SU(2) Haar measure.

Motivation & Outline Lattice Formulation Results

Discretization

Lattice regularized partition function:

$$\begin{split} Z &= \int \left\{ \prod_{x} \frac{\mathrm{d}\pi_{x}^{1} \wedge \mathrm{d}\pi_{x}^{2} \wedge \mathrm{d}\pi_{x}^{3}}{\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|}} \right\} \exp\left(\kappa \sum_{x} \left\{ \sum_{v} \left(\pm \sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right| \left|1 - \left|\bar{\pi}_{x+\widehat{v}}\right|^{2}\right|} \right. \right. \right. \right. \\ &+ \frac{e^{2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} + i\pi_{x}^{2}\right) \left(\pi_{x+\widehat{v}}^{1} - i\pi_{x+\widehat{v}}^{2}\right) + \frac{e^{-2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} - i\pi_{x}^{2}\right) \left(\pi_{x+\widehat{v}}^{1} + i\pi_{x+\widehat{v}}^{2}\right) \\ &+ \pi_{x}^{3}\pi_{x+\widehat{v}}^{3}\right) + \bar{s} \cdot \bar{\pi}_{x} + s_{4} \sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|} \right\} \Big) \end{split}$$

Flux Representation

• write $\bar{s} \cdot \bar{\pi}_x$ in terms of iso-charge eigenbasis:

$$\begin{split} Z &= \int \left\{ \prod_{x} \frac{\mathrm{d}\pi_{x}^{1} \wedge \mathrm{d}\pi_{x}^{2} \wedge \mathrm{d}\pi_{x}^{3}}{\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|}} \right\} \exp \left(\kappa \sum_{x} \left\{ \sum_{v} \left(\pm \sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right| \left|1 - \left|\bar{\pi}_{x+\hat{v}}\right|^{2}\right|} \right. \right. \right. \\ &+ \frac{e^{2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} + \mathrm{i}\pi_{x}^{2}\right) \left(\pi_{x+\hat{v}}^{1} - \mathrm{i}\pi_{x+\hat{v}}^{2}\right) + \frac{e^{-2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} - \mathrm{i}\pi_{x}^{2}\right) \left(\pi_{x+\hat{v}}^{1} + \mathrm{i}\pi_{x+\hat{v}}^{2}\right) \\ &+ \pi_{x}^{3}\pi_{x+\hat{v}}^{3}\right) + \left(\frac{s_{1} - \mathrm{i}s_{2}}{2}\right) \left(\pi_{x}^{1} + \mathrm{i}\pi_{x}^{2}\right) + \left(\frac{s_{1} + \mathrm{i}s_{2}}{2}\right) \left(\pi_{x}^{1} - \mathrm{i}\pi_{x}^{2}\right) \\ &+ s_{3}\pi_{x}^{3} + s_{4}\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|} \right\} \end{split}$$

Motivation & Outline Lattice Formulation Results Flux Representation

split exponential into product of exponentials.

$$\begin{split} & \mathcal{Z} = \int \left\{ \prod_{x} \frac{\mathrm{d}\pi_{x}^{1} \wedge \mathrm{d}\pi_{x}^{2} \wedge \mathrm{d}\pi_{x}^{3}}{\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|^{2}}} \right\} \left\{ \prod_{v} \exp\left(\pm \kappa \sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|\left|1 - \left|\bar{\pi}_{x+\hat{v}}\right|^{2}\right|}\right) \right) \\ & \exp\left(\frac{\kappa e^{2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} + \mathrm{i}\pi_{x}^{2}\right) \left(\pi_{x+\hat{v}}^{1} - \mathrm{i}\pi_{x+\hat{v}}^{2}\right)\right) \exp\left(\frac{\kappa e^{-2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} - \mathrm{i}\pi_{x}^{2}\right) \left(\pi_{x+\hat{v}}^{1} + \mathrm{i}\pi_{x+\hat{v}}^{2}\right)\right) \\ & \exp\left(\kappa\pi_{x}^{3}\pi_{x+\hat{v}}^{3}\right) \right\} \exp\left(\kappa\left(\frac{s_{1} - \mathrm{i}s_{2}}{2}\right) \left(\pi_{x}^{1} + \mathrm{i}\pi_{x}^{2}\right)\right) \exp\left(\kappa\left(\frac{s_{1} + \mathrm{i}s_{2}}{2}\right) \left(\pi_{x}^{1} - \mathrm{i}\pi_{x}^{2}\right)\right) \\ & \exp\left(\kappa s_{3}\pi_{x}^{3}\right) \exp\left(\kappa s_{4}\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|}\right) \right\} \end{split}$$

Motivation & Outline Lattice Formulation Results

Flux Representation

write each exponential as a power series

$$\begin{split} Z &= \int \left\{ \prod_{x} \frac{\mathrm{d}\pi_{x}^{1} \wedge \mathrm{d}\pi_{x}^{2} \wedge \mathrm{d}\pi_{x}^{3}}{\sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right|}} \left\{ \prod_{v} \left(\sum_{\xi_{x,v}} \frac{1}{\xi_{x,v}!} \left(\pm \kappa \sqrt{\left|1 - \left|\bar{\pi}_{x}\right|^{2}\right| \left|1 - \left|\bar{\pi}_{x+\widehat{v}}\right|^{2}\right|} \right)^{\xi_{x,v}} \right) \right. \\ &\left. \left(\sum_{\eta_{x,v}} \frac{1}{\eta_{x,v}!} \left(\frac{\kappa e^{2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} + i\pi_{x}^{2} \right) \left(\pi_{x+\widehat{v}}^{1} - i\pi_{x+\widehat{v}}^{2} \right) \right)^{\eta_{x,v}} \right) \right. \\ \left(\sum_{\overline{\eta}_{x,v}} \frac{1}{\overline{\eta}_{x,v}!} \left(\frac{\kappa e^{-2\mu\delta_{v,d}}}{2} \left(\pi_{x}^{1} - i\pi_{x}^{2} \right) \left(\pi_{x+\widehat{v}}^{1} + i\pi_{x+\widehat{v}}^{2} \right) \right)^{\overline{\eta}_{x,v}} \right) \left(\sum_{\chi_{x,v}} \frac{1}{\chi_{x,v}!} \left(\kappa \pi_{x}^{3} \pi_{x+\widehat{v}}^{3} \right)^{\chi_{x,v}} \right) \right) \right\} \\ &\left(\sum_{m_{x}} \frac{1}{m_{x}!} \left(\frac{\kappa}{2} \left(s_{1} - is_{2} \right) \left(\pi_{x}^{1} + i\pi_{x}^{2} \right) \right)^{m_{x}} \right) \left(\sum_{m_{x}} \frac{1}{\overline{m}_{x}!} \left(\kappa s_{4} \sqrt{\left|1 - \left|\overline{\pi}_{x}\right|^{2}} \right)^{\sigma_{x}} \right) \right) \right\} \end{split}$$

Flux Representation

change to spherical coordinates on SU(2) :

$$\begin{split} &\pi_x^1 = \sin(\alpha_x)\sin(\theta_x)\cos(\phi_x) \quad , \qquad &\pi_x^3 = \sin(\alpha_x)\cos(\theta_x) \\ &\pi_x^2 = \sin(\alpha_x)\sin(\theta_x)\sin(\phi_x) \quad , \qquad &\mu_g(\Sigma_x) = \sin^2(\alpha_x)\sin(\theta_x)d\alpha_x \wedge d\theta_x \wedge d\phi_x, \end{split}$$

$$\begin{split} Z &= \sum_{\{\eta,\bar{\eta},\xi,\chi,m\bar{m},n,o\}} \left\{ \prod_{x,v} \frac{\kappa^{\eta_{x,v}+\bar{\eta}_{x,v}+\xi_{x,v}+\chi_{x,v}}}{\eta_{x,v}!\xi_{x,v}!\chi_{x,v}!} \right\} \\ &\qquad \left\{ \prod_{x} \frac{(\kappa(s_{1}-is_{2}))^{m_{x}}(\kappa(s_{1}+is_{2}))^{\overline{m}_{x}}(\kappa s_{3})^{n_{x}}(\kappa s_{4})^{o_{x}}}{m_{x}!\bar{m}_{x}!n_{x}!o_{x}!} \right\} \\ &\qquad \left\{ \prod_{x} \int_{0}^{\pi} d\alpha_{x} \int_{0}^{\pi} d\theta_{x} \sin^{2}(\alpha_{x}) \sin(\theta_{x}) \left(\frac{1}{2}\sin(\alpha_{x})\sin(\theta_{x})\right)^{m_{x}+\overline{m}_{x}+\sum_{v}(\eta_{x,v}+\bar{\eta}_{x,v}+\eta_{x-\bar{v},v}+\bar{\eta}_{x-\bar{v},v})}{(\sin(\alpha_{x})\cos(\theta_{x}))^{n_{x}+\sum_{v}(\chi_{x,v}+\chi_{x-\bar{v},v})}} \right. \\ &\qquad \left(\sin(\alpha_{x})\cos(\theta_{x}) \right)^{n_{x}+\sum_{v}(\chi_{x,v}+\chi_{x-\bar{v},v})} \\ &\qquad \left(\cos(\alpha_{x}) \right)^{o_{x}+\sum_{v}(\xi_{x,v}+\xi_{x-\bar{v},v})} e^{2\mu(\eta_{x,4}-\bar{\eta}_{x,4})} \int_{0}^{2\pi} d\phi_{x} e^{i\phi_{x}(m_{x}-\overline{m}_{x}+\sum_{v}(\eta_{x,v}-\bar{\eta}_{x,v}-(\eta_{x-\bar{v},v}-\bar{\eta}_{x-\bar{v},v})))} \right\} \end{split}$$

Motivation & Outline Lattice Formulation Results

Flux Representation

define:

$$\begin{aligned} A_x &= \sum_{\nu} (\eta_{x,\nu} + \bar{\eta}_{x,\nu} + \eta_{x-\bar{\nu},\nu} + \bar{\eta}_{x-\bar{\nu},\nu}), \quad C_x = \sum_{\nu} (\chi_{x,\nu} + \chi_{x-\bar{\nu},\nu}), \quad B_x = \sum_{\nu} (\xi_{x,\nu} + \xi_{x-\bar{\nu},\nu}) \\ \text{and:} \quad \eta_{x,\nu} - \bar{\eta}_{x,\nu} = k_{x,\nu} \in \mathbb{Z} \quad , \qquad \qquad \eta_{x,\nu} + \bar{\eta}_{x,\nu} = |k_{x,\nu}| + 2I_{x,\nu} \in \mathbb{N}_0 \\ m_x - \bar{m}_x = p_x \in \mathbb{Z} \quad , \qquad \qquad \qquad m_x + \bar{m}_x = |p_x| + 2q_x \in \mathbb{N}_0 \end{aligned}$$

carry out integration:

an

Flux Representation

define:

$$A_x = \sum_{\nu} (\eta_{x,\nu} + \bar{\eta}_{x,\nu} + \eta_{x-\hat{\nu},\nu} + \bar{\eta}_{x-\hat{\nu},\nu}), \quad C_x = \sum_{\nu} (\chi_{x,\nu} + \chi_{x-\hat{\nu},\nu}), \quad B_x = \sum_{\nu} (\xi_{x,\nu} + \xi_{x-\hat{\nu},\nu})$$

and:

carry out integration:

$$Z = \sum_{\{k,l,\xi,\chi,p,q,n,o\}} \left\{ \prod_{x,v} \frac{\kappa^{|k_{x,v}| + 2l_{x,v} + \xi_{x,v} + \chi_{x,v}}}{(|k_{x,v}| + l_{x,v})! l_{x,v}! \xi_{x,v}! \chi_{x,v}!} \right\} \\ \left\{ \prod_{x} \frac{(\kappa s)^{|p_{x}| + 2q_{x}} e^{-i\phi_{s}p_{x}} (\kappa s_{3})^{n_{x}} (\kappa s_{4})^{o_{x}} e^{2\mu k_{x,4}}}{(|p_{x}| + q_{x})! q_{x}! n_{x}! o_{x}!} \\ \delta(p_{x} + \sum_{v} (k_{x,v} - k_{x-\bar{v},v})) W(A_{x} + |p_{x}| + 2q_{x}, B_{x} + o_{x}, C_{x} + n_{x}) \right\},$$

• note: due to delta function constraint: $\sum_{x} p_x = 0 \Rightarrow \prod_{x} e^{i\phi_s p_x} = 1$ (if $\phi_s = \text{const.}$).

Flux Representation

■ absorb summation over *q*, *n*, *o* into new weight :

$$\begin{split} Z &= \sum_{\{k,l,\xi;\chi,\rho\}} \left\{ \prod_{x,v} \frac{\kappa^{|k_{x,v}|+2_{k,v}+\xi_{x,v}+\chi_{x,v}}}{(|k_{x,v}|+l_{x,v})!\,l_{x,v}!\,\xi_{x,v}!\,\chi_{x,v}!} \right\} \\ & \left\{ \prod_{x} \delta(\rho_{x} + \sum_{v} (k_{x,v} - k_{x-\hat{v},v})) \, e^{2\mu k_{x,4}} \, w(A_{x},B_{x},C_{x},\rho_{x};s,\phi_{s},s_{3},s_{4},\kappa) \right\}, \end{split}$$

with

$$w(A, B, C, p, s, \phi_s, s_3, s_4, \kappa) = \sum_{q,n,o=0}^{\infty} \frac{(\kappa s)^{|p|+2q} e^{-i\phi_s p} (\kappa s_3)^n (\kappa s_4)^o}{(|p|+q)! q! n! o!} \frac{1 + (-1)^{C+n}}{2} \frac{1 + (-1)^{B+o}}{2} \frac{\Gamma(\frac{1+C+n}{2}) \Gamma(\frac{1+B+o}{2}) \Gamma(\frac{2+A+|p|+2q}{2})}{2^{(2+A+|p|+2q)/2} \Gamma(\frac{4+A+|p|+2q+B+o+C+n}{2})}.$$

• $w(A, B, C, p, s, \phi_s, s_3, s_4, \kappa)$ pre-computed at beginning of a simulation.

Simulation Method

Updates in Monte Carlo simulation are subject to two constraints :

$$\begin{split} Z &= \sum_{\{k,l,\xi,\chi,\rho\}} \left\{ \prod_{x,v} \frac{\kappa^{|k_{x,v}| + 2l_{x,v} + \xi_{x,v} + \chi_{x,v}}}{(|k_{x,v}| + l_{x,v})! l_{x,v}! \xi_{x,v}! \chi_{x,v}!} \right\} \\ & \left\{ \prod_{x} \delta(\rho_{x} + \sum_{v} (\kappa_{x,v} - \kappa_{x-\widehat{v},v})) e^{2\mu k_{x,4}} w(A_{x}, B_{x}, C_{x}, \rho_{x}; s, \phi_{s}, s_{3}, s_{4}, \kappa) \right\}, \end{split}$$

with

$$w(A, B, C, \rho, s, \phi_s, s_3, s_4, \kappa) = \sum_{q,n,o=0}^{\infty} \frac{(\kappa s)^{|\rho|+2q} e^{-i\phi_s \rho} (\kappa s_3)^n (\kappa s_4)^o}{(|\rho|+q)! q! n! o!} \frac{1 + (-1)^{C+n}}{2} \frac{1 + (-1)^{B+o}}{2} \frac{\Gamma(\frac{1+C+n}{2}) \Gamma(\frac{1+B+o}{2}) \Gamma(\frac{2+A+|\rho|+2q}{2})}{2^{(2+A+|\rho|+2q)/2} \Gamma(\frac{4+A+|\rho|+2q+B+o+C+n}{2})}.$$

■ *local charge conservation* for the p_x and $k_{x,v}$ variables \Rightarrow update by *charged worm* (closed)

- evenness constraint for the combinations $B_x + o_x$ and $C_x + n_x \Rightarrow$ update by *neutral worm* (closed)
- no constraints for $I_{X,V}$ variables \Rightarrow sampled by local Metropolis.

Motivation & Outline Lattice Formulation Results

ldea: update $k_{x,v}$ variables without violating constraints by proposing insertion of external source/sink pair and sample their distribution instead of *Z* itself.

an zürich

- Idea: update k_{x,v} variables without violating constraints by proposing insertion of external source/sink pair and sample their distribution instead of Z itself.
- Motivation:

Charged Worm

charged correlator

$$\left\langle \pi_x^- \pi_y^+ \right\rangle = \frac{1}{\kappa^2} \frac{\partial^2 \log(Z)}{\partial s_x^- \partial s_y^+} = \left\langle \frac{\frac{1}{2} (|\boldsymbol{p}_x| - \boldsymbol{p}_x) + \boldsymbol{q}_x}{\kappa s_x^-} \frac{\frac{1}{2} (|\boldsymbol{p}_y| + \boldsymbol{p}_y) + \boldsymbol{q}_y}{\kappa s_y^+} \right\rangle + const.$$

with $s_x^{\pm} \propto s_x^1 \mp i s_x^2$ being source for a charged pion π_x^{\pm} at site x.

an Izürich

- Idea: update k_{x,v} variables without violating constraints by proposing insertion of external source/sink pair and sample their distribution instead of Z itself.
- Motivation:

Charged Worm

charged correlator

$$\left\langle \pi_x^- \pi_y^+ \right\rangle = \frac{1}{\kappa^2} \frac{\partial^2 \log(Z)}{\partial s_x^- \partial s_y^+} = \left\langle \frac{\frac{1}{2} (|\rho_x| - \rho_x) + q_x}{\kappa s_x^-} \frac{\frac{1}{2} (|\rho_y| + \rho_y) + q_y}{\kappa s_y^+} \right\rangle + const.$$

with $s_x^{\pm} \propto s_x^1 \mp i s_x^2$ being source for a charged pion π_x^{\pm} at site *x*. shift p_x , p_z such that $\frac{\frac{1}{2}(|p_x|-p_x)+q_x}{\kappa s_x^-}$, $\frac{\frac{1}{2}(|p_y|+p_y)+q_y}{\kappa s_y^+}$ get absorbed into weight factors at *x*, *y*:

$$\begin{split} \langle \pi_x^- \pi_y^+ \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi_{2,Y},p\}} \left\{ \prod_{z,v} \frac{\kappa^{|k_{z,v}| + 2_{z,v} + \xi_{z,v} + \chi_{z,v}}}{(|k_{z,v}| + l_{z,v})! l_{z,v}! \xi_{z,v}! \chi_{z,v}!} \right\} \\ &\left\{ \prod_z \delta(\rho_z - \delta_{z,x} + \delta_{z,y} + \sum_v (k_{z,v} - k_{z-\widehat{v},v})) e^{2\mu k_{z,4}} w(A_z + \delta_{z,x} + \delta_{z,y}, B_z, C_z, \rho_z; s, \phi_s, s_3, s_4, \kappa) \right\} + const., \end{split}$$

an Izürich

- Idea: update k_{x,v} variables without violating constraints by proposing insertion of external source/sink pair and sample their distribution instead of Z itself.
- Motivation:

Charged Worm

charged correlator

$$\left\langle \pi_x^- \pi_y^+ \right\rangle = \frac{1}{\kappa^2} \frac{\partial^2 \log(Z)}{\partial s_x^- \partial s_y^+} = \left\langle \frac{\frac{1}{2} (|\rho_x| - \rho_x) + q_x}{\kappa s_x^-} \frac{\frac{1}{2} (|\rho_y| + \rho_y) + q_y}{\kappa s_y^+} \right\rangle + const.$$

with s[±]_x ∝ s¹_x ∓ i s²_x being source for a charged pion π[±]_x at site *x*.
 shift p_x, p_z such that ¹/₂(|p_x|-p_x)+q_x/_{κs⁻_x}, ¹/₂(|p_y|+p_y)+q_y/_{κs⁺_y} get absorbed into weight factors at *x*, *y*:

$$\begin{split} & \left\langle \pi_{x}^{-}\pi_{y}^{+}\right\rangle = \frac{1}{Z}\sum_{\{k,l,\xi_{2},y,p\}} \left\{ \prod_{z,v} \frac{\kappa^{|k_{z,v}|+2_{z,v}+\xi_{z,v}+\chi_{z,v}}}{(|k_{z,v}|+l_{z,v})! l_{z,v}!\xi_{z,v}!\chi_{z,v}!} \right\} \\ & \left\{ \prod_{z} \delta(\rho_{z} - \delta_{z,x} + \delta_{z,y} + \sum_{v} \left(k_{z,v} - k_{z-\widehat{v},v}\right)\right) e^{2\mu k_{z,4}} w(A_{z} + \delta_{z,x} + \delta_{z,y}, B_{z}, C_{z}, \rho_{z}; s, \phi_{s}, s_{3}, s_{4}, \kappa) \right\} + const., \end{split}$$

sample *y* with respect to *x* by worm algorithm, i.e. propose updates $y \rightarrow y + \hat{v}$, $k_{y,v} \rightarrow k_{y,v} \pm 1$ until $y \rightarrow y + \hat{v} = x$ and removal of source/sink pair is accepted.

an Izürich

- Charged Worm
 - Idea: update k_{x,v} variables without violating constraints by proposing insertion of external source/sink pair and sample their distribution instead of Z itself.
 - Motivation:
 - charged correlator

$$\left\langle \pi_x^- \pi_y^+ \right\rangle = \frac{1}{\kappa^2} \frac{\partial^2 \log(Z)}{\partial s_x^- \partial s_y^+} = \left\langle \frac{\frac{1}{2} (|\rho_x| - \rho_x) + q_x}{\kappa s_x^-} \frac{\frac{1}{2} (|\rho_y| + \rho_y) + q_y}{\kappa s_y^+} \right\rangle + const.,$$

with s[±]_x ∝ s¹_x ∓ i s²_x being source for a charged pion π[±]_x at site *x*.
 shift p_x, p_z such that ¹/₂(|p_x|-p_x)+q_x/_{κs⁻_x}, ¹/₂(|p_y|+p_y)+q_y/_{κs⁺_y} get absorbed into weight factors at *x*, *y*:

$$\begin{split} \langle \pi_x^- \pi_y^+ \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi_{2,X},p\}} \left\{ \prod_{z,v} \frac{\kappa^{|k_{z,v}| + 2_{z,v} + \xi_{z,v} + \chi_{z,v}}}{(|k_{z,v}| + l_{z,v})! l_{z,v}! \xi_{z,v}! \chi_{z,v}!} \right\} \\ &\left\{ \prod_z \delta(\rho_z - \delta_{z,x} + \delta_{z,y} + \sum_v \left(k_{z,v} - k_{z-\hat{v},v}\right)\right) e^{2\mu k_{z,4}} w(A_z + \delta_{z,x} + \delta_{z,y}, B_z, C_z, \rho_z; s, \phi_s, s_3, s_4, \kappa) \right\} + const., \end{split}$$

- sample *y* with respect to *x* by worm algorithm, i.e. propose updates $y \rightarrow y + \hat{v}$, $k_{y,v} \rightarrow k_{y,v} \pm 1$ until $y \rightarrow y + \hat{v} = x$ and removal of source/sink pair is accepted.
- $\blacksquare \Rightarrow$ well defined even if source terms are zero.

a Hzürich

Neutral Worm

- Similarly: update ξ_{x,v}, χ_{x,v} variables by insertion of pairs of external sources and sample their distribution:
 - for χ_{x,v} update use:

$$\begin{split} \langle \pi_x^3 \pi_y^3 \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi,\chi,p\}} \left\{ \prod_{z,v} \frac{\kappa^{|k_{Z,v}| + 2l_{Z,v} + \xi_{Z,v} + \chi_{Z,v}}}{(|k_{Z,v}| + l_{Z,v})! \, l_{Z,v}! \, \xi_{Z,v}! \, \chi_{Z,v}!} \right\} \\ &\left\{ \prod_z \delta(\rho_z + \sum_v (k_{z,v} - k_{z-\widehat{v},v})) \, e^{2\mu k_{Z,4}} \, w(A_z, B_z, C_z + \delta_{z,x} + \delta_{z,y}, \rho_z; s, \phi_s, s_3, s_4, \kappa) \right\} + const., \end{split}$$

for ξ_{x,v} update use:

$$\begin{split} \langle \pi_{x}^{4} \pi_{y}^{4} \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi,\chi,p\}} \left\{ \prod_{z,v} \frac{\kappa^{|k_{z,v}| + 2l_{z,v} + \xi_{z,v} + \chi_{z,v}}}{(|k_{z,v}| + l_{z,v})! \, l_{z,v}! \, \xi_{z,v}! \, \chi_{z,v}!} \right\} \\ &\left\{ \prod_{z} \delta(p_{z} + \sum_{v} (k_{z,v} - k_{z-\hat{v},v})) \, e^{2\mu k_{z,4}} \, w(A_{z}, B_{z} + \delta_{z,x} + \delta_{z,y}, C_{z}, p_{z}; s, \phi_{s}, s_{3}, s_{4}, \kappa) \right\} + const. \end{split}$$

sample y with respect to x by worm algorithm.

a Hzürich

Neutral Worm

- Similarly: update ξ_{x,v}, χ_{x,v} variables by insertion of pairs of external sources and sample their distribution:
 - for χ_{x,v} update use:

$$\begin{split} \langle \pi_x^3 \pi_y^3 \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi,\chi,p\}} \left\{ \prod_{z,V} \frac{\kappa^{|k_{Z,V}| + 2l_{Z,V} + \xi_{Z,V} + \chi_{Z,V}}}{(|k_{Z,V}| + l_{Z,V})! \, l_{Z,V}! \, \xi_{Z,V}! \, \chi_{Z,V}!} \right\} \\ &\left\{ \prod_z \delta(\rho_z + \sum_V (k_{z,V} - k_{z-\hat{V},V})) \, e^{2\mu k_{Z,4}} \, w(A_z, B_z, C_z + \delta_{z,X} + \delta_{Z,Y}, \rho_z; s, \phi_s, s_3, s_4, \kappa) \right\} + const., \end{split}$$

for ξ_{x,v} update use:

$$\begin{split} \langle \pi_x^4 \pi_y^4 \rangle &= \frac{1}{Z} \sum_{\{k,l,\xi,\chi,p\}} \left\{ \prod_{z,V} \frac{\kappa^{|k_{Z,V}| + 2l_{Z,V} + \xi_{Z,V} + \chi_{Z,V}}}{(|k_{Z,V}| + l_{Z,V})! \, l_{Z,V}! \, \xi_{Z,V}! \, \chi_{Z,V}!} \right\} \\ &\left\{ \prod_z \delta(\rho_z + \sum_V (k_{z,V} - k_{z-\widehat{V},V})) \, e^{2\mu k_{Z,4}} \, w(A_z, B_z + \delta_{z,X} + \delta_{z,Y}, C_z, \rho_z; s, \phi_s, s_3, s_4, \kappa) \right\} + const.. \end{split}$$

- sample y with respect to x by worm algorithm.
- again: well defined even if corresponding source terms are zero.

Crosscheck of Code

Motivation & Outline Lattice Formulation Results Crosscheck of Code

For d = 3 scaling analysis at $\mu = 0$ consistent with known results $\nu = 0.7377$, $\kappa_c = 0.93590$ [e.g. Engels & Karsch, arXiv:1105.0584]:

$$\kappa_{pcr}(L) = \kappa_{cr} + \frac{a}{L^{1/\nu}} \left(1 + \frac{b}{L^{1/\nu}}\right)$$

$$\Rightarrow \kappa_{cr} \approx 0.94$$
 for $\nu = 0.7377$

(rather small lattices)

an zürich

Improved Estimators for General Correlators

Consider e.g. "radial correltaor" (radial in π₁-π₂-plane):

$$\left\langle \pi'_{x}\pi'_{y}\right\rangle = \frac{1}{\kappa^{2}}\frac{\partial^{2}\log(Z)}{\partial s_{x}\partial s_{y}} = \left\langle \frac{|p_{x}|+2q_{x}}{\kappa s_{x}}\frac{|p_{y}|+2q_{y}}{\kappa s_{y}}\right\rangle + const.,$$

where $s_x = s_y = s = |s_1 \pm is_2|$, as before.

Bad observable in this form:
 source term required to be well defined
 can only be measured in between worm updates

Obtain improved estimator by splitting:

 $|p_x| + 2q_x = (\frac{1}{2}(|p_x| + p_x) + q_x) + (\frac{1}{2}(|p_x| - p_x) + q_x)$ and shifting variables (as has been done for the charged correlator), such that

$$\begin{split} \langle \pi_{x}^{r} \pi_{y}^{r} \rangle &= \frac{1}{Z} \sum_{\sigma_{1}, \sigma_{2} \in \{\pm\}} \sum_{\{k, l, \xi, \chi, \rho\}} \left\{ \prod_{z, v} \frac{\kappa^{|k_{z, v}| + 2l_{z, v} + \xi_{z, v} + \chi_{z, v}}}{(|k_{z, v}| + l_{z, v})! l_{z, v}! \xi_{z, v}! \chi_{z, v}!} \right\} \\ & \left\{ \prod_{z} \delta(\rho_{z} + \sigma_{1} \delta_{z, x} + \sigma_{2} \delta_{z, y} + \sum_{v} (k_{z, v} - k_{z - \hat{v}, v})) e^{2\mu k_{z, 4}} \right. \\ & \left. w(A_{z} + \delta_{z, x} + \delta_{z, y}, B_{z}, C_{z}, \rho_{z}; s, \phi_{s}, s_{3}, s_{4}, \kappa) \right\} + const., \end{split}$$

a Hzürich

Motivation & Outline Lattice Formulation Results

Improved Estimators for General Correlators

Improved estimator:

$$\begin{split} \langle \pi_{x}^{r} \pi_{y}^{r} \rangle &= \frac{1}{Z} \sum_{\sigma_{1}, \sigma_{2} \in \{\pm\}} \sum_{\{k, l, \xi, \chi, \rho\}} \left\{ \prod_{z, v} \frac{\kappa^{|k_{z,v}| + 2l_{z,v} + \xi_{z,v} + \chi_{z,v}}}{(|k_{z,v}| + l_{z,v})! l_{z,v}! \xi_{z,v}! \chi_{z,v}!} \right\} \\ & \left\{ \prod_{z} \delta(\rho_{z} + \sigma_{1} \delta_{z,x} + \sigma_{2} \delta_{z,y} + \sum_{v} (k_{z,v} - k_{z-\widehat{v},v})) e^{2\mu k_{z,4}} \right. \\ & \left. w(A_{z} + \delta_{z,x} + \delta_{z,y}, B_{z}, C_{z}, \rho_{z}; s, \phi_{s}, s_{3}, s_{4}, \kappa) \right\} + const., \end{split}$$

- two pieces with $\sigma_1 \neq \sigma_2$ can be sampled during charged worm.
- the pieces with σ₁ = σ₂ contribute only if source s is non-zero; can be sampled during worm after insertion of two equally charged monomers:
 - instead of proposing worm update $y \to y + \hat{v}$, $k_{y,v} \to k_{y,v} \pm 1$, propose a jump $y \to z$, $p_y \to p_y \pm 1$, $p_z \to p_z \pm 1$, with the same sign for the shift ± 1 at y and z, such that in order to satisfy the delta-function constraint at z, the charge of the external source would have to change (opposite sign ± 1 for the shifts at y and z lead to disconnected piece for the charged correlator itself).
- same trick works for arbitrary cross correlators, such as $\langle \pi_x^r \pi_y^3 \rangle$ or $\langle \pi_x^4 \pi_y^3 \rangle$. They can be measured by starting with $\langle \pi_x^r \pi_y^r \rangle$ or $\langle \pi_x^4 \pi_y^4 \rangle$, then letting the worm jump and change its head by inserting appropriate monomers.

Symmetry breaking transition also exists in 4D.

mass splitting at $\kappa = \kappa_{pcr} \approx 0.605$

Motivation & Outline Lattice Formulation **FIH** zürich Chiral Symmetry breaking in 4D

Symmetry breaking transition also exists in 4D.

Results

- isospin density itself is zero at μ = 0 for all κ
- isospin susceptibilitiy becomes non-zero for $\kappa > \kappa_{ncr}$
- scaling analysis consistent with v = 0.5. $\kappa_c = 0.615$

Symmetry breaking transition also exists in 4D.

- isospin density itself is zero at μ = 0 for all κ
- isospin susceptibilitiy becomes non-zero for $\kappa > \kappa_{\textit{pcr}}$
- scaling analysis consistent with ν = 0.5, κ_c = 0.615

Possibility to define continuum limit although perturbatively non-renormalizable theory in 4D.

ani zürich	Motivation & Outline Lattice Formulation Results		
Mass Spectrum			

- Mass spectrum as a function of μ as obtained from our simulations ($\kappa = 1.0 > \kappa_{pcr}, s_4 = 0.5$):
 - isocharge eigenbasis: $\pi_0 = \pi_3,$ $\pi^{\pm} = \pi_1 \mp i\pi_2$
 - preferred basis for μ < m_π/2 but no longer tangential to SU(2) after vacuum has rotated away from 1.

- Mass spectrum as a function of μ as obtained from our simulations ($\kappa = 1.0 > \kappa_{pcr}, s_4 = 0.5$):
 - cylindrical coordinates: $\pi_0 = \pi_3,$ $\pi_1 = r \cos(\phi),$ $\pi_2 = r \sin(\phi),$ π_4
 - π₄ not tangential to SU(2) for μ < m_π/2,
 - π_r not tangential to SU(2) for $\mu > m_{\pi}/2$

• Mass spectrum as a function of μ as obtained from our simulations ($\kappa = 1.0 > \kappa_{pcr}, s_4 = 0.5$):

- spherical coordinates: $\pi_0 = \pi_3$, $\pi_1 = \sin(\alpha) \cos(\phi)$, $\pi_2 = \sin(\alpha) \sin(\phi)$, $\pi_4 = \cos(\alpha)$
- all excitations tangential to SU(2)

polar coordinates for sources:

$$s_{x,4} = \tilde{s}_x \cos(\alpha_{s,x}), \quad s_{x,3} = \tilde{s}_x \sin(\alpha_{s,x}) \cos(\theta_{s,x}), \quad s_x = \tilde{s}_x \sin(\alpha_{s,x}) \sin(\theta_{s,x}).$$

$$\Rightarrow \frac{1}{\kappa \tilde{s}_{x}} \frac{\partial Z}{\partial \alpha_{s,x}} = \cos(\alpha_{s,x}) \bigg(\sin(\theta_{s,x}) \frac{1}{\kappa} \frac{\partial Z}{\partial s_{x}} + \cos(\theta_{s,x}) \frac{1}{\kappa} \frac{\partial Z}{\partial s_{x,3}} \bigg) - \sin(\alpha_{s,x}) \frac{1}{\kappa} \frac{\partial Z}{\partial s_{x,4}},$$

where the appropriate values of θ_s and α_s to be used in the " π_{α} correlator" are determined from the ratios of the condensates measured along with the full correlator.

THzürich

Mass Spectrum

- Compare with mass spectrum obtained by solving equations of motion at minimum of effective potential [Son & Stephanov, hep-ph/0011365]:
 - for $\mu < m_{\pi}/2$: isocharge eigenstates
 - for $\mu > m_{\pi}/2$:
 - $\label{eq:phi} \pi^+ \to \pi_\varphi,$
 - continuation of π⁻ has no fixed orientation in isospin space but rotates in π₁-π₂-plane as function of time.

an zürich

Mass Spectrum

- Mass spectrum from Hessian of effective potential :
 - spherical coordinates:

$$\begin{aligned} \pi_0 &= \pi_3, \\ \pi_1 &= \sin(\alpha)\cos(\phi), \\ \pi_2 &= \sin(\alpha)\sin(\phi), \\ \pi_4 &= \cos(\alpha) \end{aligned}$$

 looks similar to corresponding plot obtained from our simulations

a Hzürich

Conclusion & Outlook

- Conclusion
 - Possible to simulate SU(2) (or O(4)) σ-model (so far the non-linear case, but linear case is also possible) with a chemical potential and various source terms.
 - Improved observable to measure full (cross) correlator.
 - Measurement of mass spectrum in symmetric and broken phase + difficulties / ambiguities in the latter case.
- Outlook
 - Generalization to $O(N) \sigma$ -model (linear and non-linear) straight forward.
 - New lattice formulation for CP^{N-1} models in terms of U(1) gauged O(2N-1) models.
 - Including Higher order terms from χ -PT expansion.
 - Other symmetry groups?