NPR determination of quark masses from the HISQ action

Andrew Lytle (HPQCD Collaboration) University of Glasgow

> 14.07.15 Lattice 2015 Kobe, Japan

- Quark masses fundamental parameters of the Standard Model.
- Many applications to phenomenology and BSM physics. Example: Higgs partial widths.
 - Couplings proportional to quark masses.
 - ► Main source of uncertainty in partial [1404.0319] widths from m_b, m_c, α_s .
- Would like to reduce uncertainties via:
 - ▶ Determinations from multiple formulations.
 - ▶ Multiple determinations in a given formulation.

Outline

- Theory background.
- HPQCD approaches.
 - $\langle JJ \rangle$ time moments.
 - ▶ Mass ratios.
 - ► NPR.
- NPR with staggered (HISQ) fermions.
- NPR results.
- Conclusion.

Bare quark masses are input parameters to lattice simulation. These parameters are tuned to reproduce physical quantities, e.g.

- $m_{ud0} \rightarrow m_{\pi}^2$
- $m_{s0} \rightarrow m_K^2$
- $m_{c0} \rightarrow m_{\eta_c}$

Need a way to convert between lattice input parameters and renormalized quark masses:

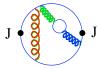
$$m_q^{\overline{\mathrm{MS}}}(\mu) = Z_m^{\overline{\mathrm{MS}}}(\mu, 1/a) \, m_{q0}$$

HPQCD is pursuing several strategies for accurate determination of quark masses, including

- Time moments of current correlators (charm and bottom, also w/ NRQCD).
- Quark mass ratios.
- Non-perturbative renormalization method (NPR).

This is important to assess systematics and quantify uncertainties. Calculate time-moments of $J_5 \equiv \bar{\psi}_h \gamma_5 \psi_h$ correlators:

$$G(t) = a^6 \sum_{\mathbf{x}} (am_{0h})^2 \langle J_5(t, \mathbf{x}) J_5(0, 0) \rangle$$



• Currents are absolutely normalized (no Zs required).

•
$$G(t)$$
 is UV finite $\rightarrow G(t)_{\text{cont}} = G(t)_{\text{latt}} + \mathcal{O}(a^2).$

The time-moments $G_n = \sum_t (t/a)^n G(t)$ can be computed in perturbation theory. For $n \ge 4$,

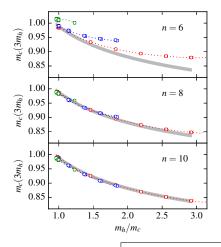
$$G_n = \frac{g_n(\alpha_{\overline{\mathrm{MS}}}, \mu)}{am_h(\mu)^{n-4}}.$$

Basic strategy:

- 1. Calculate $G_{n,\text{latt}}$ for a variety of lattice spacings and m_{h0} .
- 2. Compare continuum limit $G_{n,\text{cont}}$ with $G_{n,\text{pert}}$ (at reference scale $\mu = m_h$, say).
- 3. Determine best-fit values for $\alpha_{\overline{\text{MS}}}(m_h), m_h(m_h)$.

Results for
$$n_f = 4$$

[1408.4169]



$$m_c(3m_h) = \frac{r_n(\alpha_{\overline{\mathrm{MS}}}, \mu = 3m_h)}{R_n}$$

- Discretization effects grow with am_h and decrease with n.
- Grey band shows best-fit $m_c(3m_c)$ evolved perturbatively.

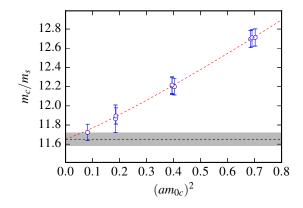
 $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.9851(63) \text{ GeV}$

$$\frac{m1_0}{m2_0} = \frac{m1^{\overline{\mathrm{MS}}}(\mu)}{m2^{\overline{\mathrm{MS}}}(\mu)} + \mathcal{O}(a^2)$$

- Tuning of simulation \rightarrow accurate determination of bare ratios.
- Precise determination of one renormalized mass can be translated to other masses.

$$m_c/m_s \ (n_f = 4)$$

[1408.4169]



 $m_c/m_s = 11.652(65) \rightarrow m_s^{\overline{\text{MS}}}(2 \text{ GeV}) = 93.6(8) \text{ MeV}.$

General idea is to renormalize operators using a scheme that is well-defined both in the continuum and on the lattice, e.g. the RI schemes:

Calculate off-shell Green's functions of operator-of-interest with external quark states.

$$G_{\Gamma}^{ij}(p) = \langle q^{i}(p) \left(\sum_{x} \bar{q}(x) \Gamma q(x) \right) \bar{q}^{j}(-p) \rangle_{\text{amp}}$$

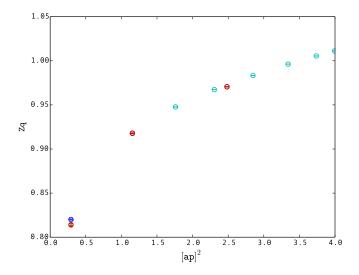
Require that the trace of the renormalized operator takes its tree-level value:

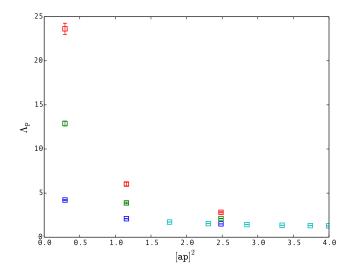
$$\Lambda_{\Gamma}(p) \equiv \frac{1}{12} \operatorname{Tr} \left[\Gamma \, G_{\Gamma}(p) \right] \simeq \frac{Z_q(p)}{Z_{\Gamma}(p)}$$

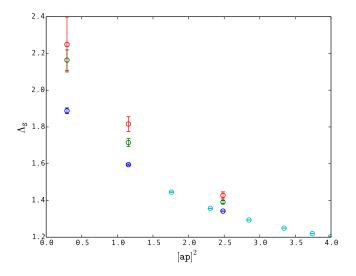
The RI (and $\overline{\text{MS}}$) schemes satisfy $Z_m = Z_S^{-1} = Z_P^{-1}$. Z_m can be extracted from the scalar correlator provided

 $\Lambda_{\rm QCD} \ll |p| \ll \pi/a$

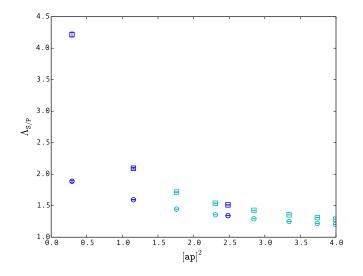
After determining $Z_m^{RI}(p)$, a perturbative calculation can be used to convert $Z^{\overline{\text{MS}}}(p) = C^{\overline{\text{MS}} \leftarrow RI}(p) Z_m^{RI}(p)$.







15 / 18



- Accurate determinations of quark masses are of fundamental importance for (B)SM physics.
- LQCD simulations provide an effective and controlled way to determine quark masses.
 - ▶ Systematically improveable.
 - ▶ Multiple complementary approaches \rightarrow assess systematics, check consistency.
 - Control of input parameters.
- I have discussed recent work determining Z_m via NPR methods. This is complementary to other approaches.

Thank you!