First results of baryon interactions from lattice QCD with physical masses (3)

--- Strangeness S=-2 two-baryon system ---

Kenji Sasaki (CCS, University of Tsukuba)
for HAL QCD Collaboration
Hadrons to Atomic nuclei

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

	HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration			
S. Aoki	T. Doi	F. Etminan	T. Hatsuda	Y. Ikeda
(YITP)	(RIKEN)	(Birjand U.)	(RIKEN)	(RIKEN)
T. Inoue	N. Ishii	K. Murano	H. Nemura	T. Miyamoto
(Nihon Univ.)	$($ (RCNP)	(RCNP)	(Univ. of Tsukuba)	(YITP)
T. Iritani	S. Gongyo	D. Kawai $(Y I T P)$	(YITP)	(YITP)

Introduction

Introduction

BB interactions are inputs for nuclear structure, astrophysical phenomena

Once we obtain a "reliable" nuclear potential, we apply them to the structure of (hyper-) nucleus
and neutron star calcration.

neutron number
We derive hadronic interactions from Lattice QCD.

Introduction

Study the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions

Lattice QCD simulation

Difficult to calculate light quarks Suffered from statistical noise

High performance for more data

Massively parallel super computer

Accessibility

Experiment

 Collision data are scarce

More intensity for more data
$S=-2 \quad$ Huge experimental facility

They would be complement each other to complete knowledge of generalized BB interaction.

SU(3) feature of BB interaction

Three flavor (u,d,s) world
Flavor symmetric

In view of quark degrees of freedom
Oka, Shimizu and Yazaki NPA464 (1987)
-Short range repulsion in BB interaction could be a result of
Pauli principle and color-magnetic interaction for the quarks.

- Strengths of repulsive core in YN and YY interaction are largely depend on their flavor structures.
-For the s-wave BB system, no repulsive core is predicted in flavor singlet state which is known as H-dibaryon channel.

H-dibaryon (theoretical studies)

HAL : PRL106(2011)162002
NPL : PRL106(2011)162001
Both results shows the bound H-dibaryon state in heavy pion region.
oPotential in flavor singlet channel is getting more attractive as decreasing quark masses

Does the H-dibaryon state survive on the physical point?

Interests of $S=-2$ multi-baryon system

H-dibaryon

-The flavor singlet state with J=0 predicted by R.L. Jaffe.

- Strongly attractive color magnetic interaction.
- No quark Pauli principle for flavor singlet state.

Double- Λ hypernucleus

-Conclusions of the "NAGARA Event"
K.Nakazawa and KEK-E176 \& E373 Collaborators
$\Lambda-\mathrm{N}$ attraction
$\Lambda-\Lambda$ weak attraction
$m_{H} \geq 2 m_{\Lambda}-6.9 \mathrm{MeV}$

Ξ hypernucleus

-Conclusions of the "KISO Event"
K.Nakazawa and KEK-E373 Collaborators
$\Xi-\mathrm{N}$ attraction

Numerical setup

2+1 flavor gauge configurations.

- Iwasaki gauge action \& O(a) improved Wilson quark action
$0 \mathrm{a}=0.086[\mathrm{fm}], \mathrm{a}^{-1}=2.300 \mathrm{GeV}$.
- $96^{3} x 96$ lattice, $L=8[f m]$.
- 200 confs $\times 12$ sources $\times 4$ rotations.

Flat wall source is considered to produce S-wave B-B state.

Exp.	Mass [MeV]
π	140
K	495
$\mathrm{~m}_{\pi} / \mathrm{m}_{\mathrm{K}}$	0.28
N	940
Λ	1115
Σ	1190
Ξ	1320

Numerical results

Lists of channels

$\Sigma \Sigma(I=2){ }^{1} S_{0}$ channel

$N \Xi(I=0)^{3} S_{1}$ channel

Potential is fitted by three-ranged Gaussian function. $\left.f(r)=\sum_{i} A_{i} A_{i(m)}^{r[m]}\right)\left(-B_{i} r\right)$

Potential looks almost saturated at $\mathrm{t}=10$.

$N \Xi, \Lambda \Sigma(I=1)^{1} S_{0}$ channel

-All diagonal element are totally repulsive in whole range.
Diagonal $N \Xi$ potential is strongly repulsive unlike the $I=0^{3} S_{1}$ case. It means that the $\mathrm{N} \Xi$ potential is strongly depend on the channel.

$N \Xi, \Lambda \Sigma, \Sigma \Sigma(I=1){ }^{3} S_{1}$ channel

Diagonal elements

Off-diagonal elements

-All diagonal element have a repulsive core and shallow attractive pocket.

- Diagonal $\Sigma \Sigma$ potential is most attractive within them.
-We find that $\mathrm{N} \Xi-\Sigma \Sigma$ transition potential is relatively strong comparing to the other transition potentials

Mイ, $N \Xi, \Sigma \Sigma(I=0){ }^{1} S_{0}$ channel

Diagonal elements

Off-diagonal elements

-All diagonal element have a repulsive core $\Sigma \Sigma-\Sigma \Sigma$ potential is strongly repulsive.
-Off-diagonal potentials are relatively strong except for $\Lambda \Lambda-\mathrm{NE}$ transition
-We need more statistics to discuss physical observables through this potential.

Comparison of potential matrices

Transformation of potentials from the particle basis to the $\mathrm{SU}(3)$ irreducible representation (irrep) basis.

In the SU(3) irreducible representation basis, the potential matrix should be diagonal in the $\mathrm{SU}(3)$ symmetric configuration.

Off-diagonal part of the potential matrix in the $\mathrm{SU}(3)$ irrep basis would be an effectual measure of the $\mathrm{SU}(3)$ breaking effect.

1, 8s, 27 plet ${ }^{1} S_{0}$ channel

Diagonal elements

Off-diagonal elements

-Potential of flavor singlet channel does not have a repulsive core
-Potential of flavor octet channel is strongly repulsive which reflect a Pauli effect.
-Off-diagonal potentials are visible only in $r<1$ fm region.

Summary and outlook

De have investigated $S=-2 B B$ interactions from lattice QCD near the physical point.

We find that

- Potential in $\Lambda \Lambda^{1} S_{0}$ channel is weakly attractive.
- $N \Xi$ potential is largely depends on its channel.
- Potential in flavor singlet ${ }^{1} S_{0}$ channel is strongly attractive.

It is not enough statistics to calculate several observables and to discuss the fate of H -dibayon.
-Further investigation will be performed
with high statistics data.

Backup slides

Coupled channel Schrödinger equation

Preparation for the NBS wave function

$$
\begin{aligned}
\Psi^{\alpha}(E, t, \vec{r}) & =\sum_{\vec{x}}\langle 0|\left(B_{1} B_{2}\right)^{\alpha}(t, \vec{r})|E\rangle \\
\Psi^{\beta}(E, t, \vec{r}) & =\sum_{\vec{x}}\langle 0|\left(B_{1} B_{2}\right)^{\beta}(t, \vec{x})|E\rangle
\end{aligned}
$$

Two-channel coupling case

The same "in" state

Inside the interaction range

In the leading order of velocity expansion of non-local potential,

Coupled channel Schrödinger equation.

$$
\left(\frac{p_{\alpha}^{2}}{2 \mu_{\alpha}}+\frac{\nabla^{2}}{2 \mu_{\alpha}}\right) \psi^{\alpha}(\vec{x}, E)=V_{\alpha}^{\alpha}(\vec{x}) \psi^{\alpha}(\vec{x}, E)+V_{\beta}^{\alpha}(\vec{x}) \psi^{\beta}(\vec{x}, E)
$$

Asymptotic momentum are replaced by the time-derivative of R.

$$
R_{I}^{B_{1} B_{2}}(t, \vec{r})=\sum_{\vec{x}}\langle 0| B_{1}(t, \vec{x}+\vec{r}) B_{2}(t, \vec{x}) \bar{I}(0)|0\rangle e^{\left(m_{1}+m_{2}\right) t}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
V_{\alpha}^{\alpha}(\vec{r}) & V_{\beta}^{\alpha}(\vec{r}) x \\
V^{\beta}{ }_{\alpha}(\vec{r}) x^{-1} & V_{\beta}^{\beta}(\vec{r})
\end{array}\right)=\left(\begin{array}{cc}
\left(\frac{\nabla^{2}}{2 \mu_{\alpha}}-\frac{\partial}{\partial t}\right) R_{I I}^{\alpha}(\vec{r}, E) & \left(\frac{\nabla^{2}}{2 \mu_{\beta}}-\frac{\partial}{\partial t}\right) R_{I 2}^{\beta}(\vec{r}, E) \\
\left(\frac{\nabla^{2}}{2 \mu_{\alpha}}-\frac{\partial}{\partial t}\right) R_{I I}^{\alpha}(\vec{r}, E) & \left(\frac{\nabla^{2}}{2 \mu_{\beta}}-\frac{\partial}{\partial t}\right) R_{I 2}^{\beta}(\vec{r}, E)
\end{array}\right)\left(\begin{array}{ll}
R_{I I}^{\alpha}(\vec{r}, E) & R_{I I}^{\beta}(\vec{r}, E) \\
R_{I 2}^{\alpha}(\vec{r}, E) & R_{I 2}^{\beta}(\vec{r}, E)
\end{array}\right) \\
& \begin{array}{l}
x=\frac{\exp \left(-\left(m_{\alpha_{1}}+m_{\alpha_{2}}\right) t\right)}{\exp \left(-\left(m_{\beta_{1}}+m_{\beta_{2}}\right) t\right)}
\end{array}
\end{aligned}
$$

