First results of baryon interactions from lattice QCD with physical masses (3)

--- Strangeness S=-2 two-baryon system ---

Kenji Sasaki (CCS, University of Tsukuba)

for HAL QCD Collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

S. Aoki	T. Doi	F. Etminan (<i>Birjand U</i> .)	T. Hatsuda	Y. Ikeda
(<i>YITP</i>)	(<i>RIKEN</i>)		(<i>RIKEN</i>)	(<i>RIKEN</i>)
T. Inoue	N. Ishii	K. Murano	H. Nemura	T. Miyamoto
(<i>Nihon Univ</i> .)	(<i>RCNP</i>)	(<i>RCNP</i>)	(<i>Univ. of Tsukuba</i>)	(<i>YITP</i>)
T. Iritani (<i>YITP</i>)	S. Gongyo (<i>YITP</i>)	D. Kawai (<i>YITP</i>)		

Introduction

Introduction

BB interactions are inputs for nuclear structure, astrophysical phenomena

neutron number We derive hadronic interactions from Lattice QCD.

Introduction

Study the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions

They would be complement each other to complete knowledge of generalized BB interaction.

SU(3) feature of BB interaction

In view of quark degrees of freedom

Oka, Shimizu and Yazaki NPA464 (1987)

Short range repulsion in BB interaction could be a result of Pauli principle and color-magnetic interaction for the quarks.
Strengths of repulsive core in YN and YY interaction are largely depend on their flavor structures.
For the s-wave BB system, no repulsive core is predicted in flavor singlet state which is known as H-dibaryon channel.

H-dibaryon (theoretical studies)

 Both results shows the bound H-dibaryon state in heavy pion region.
 Potential in flavor singlet channel is getting more attractive as decreasing quark masses

Does the H-dibaryon state survive on the physical point?

Interests of S=-2 multi-baryon system

H-dibaryon

- The flavor singlet state with J=0 predicted by R.L. Jaffe.
 - Strongly attractive color magnetic interaction.
 - No quark Pauli principle for flavor singlet state.

Double- Λ hypernucleus

Conclusions of the "NAGARA Event"

K.Nakazawa and KEK-E176 & E373 Collaborators

 Λ −N attraction Λ − Λ weak attraction $m_{H} \ge 2m_{\Lambda} - 6.9$ MeV

Ξ hypernucleus

Conclusions of the "KISO Event"
 K.Nakazawa and KEK-E373 Collaborators

Ξ-N attraction

Numerical setup

2+1 flavor gauge configurations.

- Iwasaki gauge action & O(a) improved Wilson quark action -
- *a* = 0.086 [*fm*], a⁻¹ = 2.300 GeV.
- 96³x96 lattice, L = 8 [fm].
- 200 confs x 12 sources x 4 rotations.

Numerical results

Lists of channels

Potential looks almost saturated at t=10.

$N\Xi$, $\Lambda\Sigma$ (I=1) ¹S₀ channel

All diagonal element are totally repulsive in whole range.

• Diagonal NE potential is strongly repulsive unlike the I=0 ${}^{3}S_{1}$ case. It means that the NE potential is strongly depend on the channel.

All diagonal element have a repulsive core and shallow attractive pocket.

• Diagonal $\Sigma\Sigma$ potential is most attractive within them.

•We find that $N\Xi - \Sigma\Sigma$ transition potential is relatively strong

comparing to the other transition potentials

All diagonal element have a repulsive core ΣΣ–ΣΣ potential is strongly repulsive.
 Off-diagonal potentials are relatively strong except for ΛΛ–ΝΞ transition
 We need more statistics to discuss physical observables through this potential.

Comparison of potential matrices

Transformation of potentials

from the particle basis to the SU(3) irreducible representation (irrep) basis.

 $\begin{pmatrix} | 1 \rangle \\ | 8 \rangle \\ | 27 \rangle \end{pmatrix} = U \begin{pmatrix} | \Lambda \Lambda \rangle \\ | N \Xi \rangle \\ | \Sigma \Sigma \rangle \end{pmatrix}, U \begin{pmatrix} V^{\Lambda \Lambda} & V^{\Lambda \Lambda}_{N \Xi} & V^{\Lambda \Lambda}_{\Sigma \Sigma} \\ V^{N \Xi}_{\Lambda \Lambda} & V^{N \Xi} & V^{N \Xi}_{\Sigma \Sigma} \\ V^{\Sigma \Sigma}_{\Lambda \Lambda} & V^{\Sigma \Sigma}_{N \Xi} & V^{\Sigma \Sigma} \end{pmatrix} U^{t} \rightarrow \begin{pmatrix} V_{1} & V_{1} & V_{2} &$

In the SU(3) irreducible representation basis, the potential matrix should be diagonal in the SU(3) symmetric configuration.

Off-diagonal part of the potential matrix in the SU(3) irrep basis would be an effectual measure of the SU(3) breaking effect.

Potential of flavor singlet channel does not have a repulsive core

Potential of flavor octet channel is strongly repulsive which reflect a Pauli effect.
 Off-diagonal potentials are visible only in r<1fm region.

Summary and outlook

We have investigated S=-2 BB interactions from lattice QCD near the physical point.

We find that

• Potential in $\Lambda\Lambda$ ¹S₀ channel is weakly attractive.

NE potential is largely depends on its channel.

- Potential in flavor singlet ${}^{1}S_{n}$ channel is strongly attractive.
- It is not enough statistics to calculate several observables and to discuss the fate of H-dibayon.
- Further investigation will be performed with high statistics data.

Backup slides

 $\exp\left(-\left(m_{\beta}+m_{\beta}\right)\right)$

Coupled channel Schrödinger equation

Preparation for the NBS wave function

$$\Psi^{\alpha}(E,t,\vec{r}) = \sum_{\vec{x}} \langle 0|(B_1B_2)^{\alpha}(t,\vec{r})|E\rangle$$
$$\Psi^{\beta}(E,t,\vec{r}) = \sum_{\vec{x}} \langle 0|(B_1B_2)^{\beta}(t,\vec{x})|E\rangle$$

Inside the interaction range

Two-channel coupling case

The same "in" state

In the *leading order of velocity expansion* of non-local potential,

Coupled channel Schrödinger equation.Factorization of interaction kernel
$$\left(\frac{p_{\alpha}^{2}}{2\mu_{\alpha}} + \frac{\nabla^{2}}{2\mu_{\alpha}}\right)\psi^{\alpha}(\vec{x}, E) = V^{\alpha}_{\ \alpha}(\vec{x})\psi^{\alpha}(\vec{x}, E) + V^{\alpha}_{\ \beta}(\vec{x})\psi^{\beta}(\vec{x}, E)$$
 μ_{α} : reduced mass p_{α} : asymptotic momentum.

Asymptotic momentum are replaced by the time-derivative of *R*.

 $R_{I}^{B_{1}B_{2}}(t,\vec{r}) = \sum_{\vec{x}} \langle 0 | B_{1}(t,\vec{x}+\vec{r}) B_{2}(t,\vec{x}) \overline{I}(0) | 0 \rangle e^{(m_{1}+m_{2})t}$

$$\begin{pmatrix} V^{\alpha}_{\ \alpha}(\vec{r}) & V^{\alpha}_{\ \beta}(\vec{r})x \\ V^{\beta}_{\ \alpha}(\vec{r})x^{-1} & V^{\beta}_{\ \beta}(\vec{r}) \end{pmatrix} = \begin{pmatrix} (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\alpha}_{II}(\vec{r},E) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\beta}_{I2}(\vec{r},E) \\ (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\alpha}_{II}(\vec{r},E) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\beta}_{I2}(\vec{r},E) \end{pmatrix} \begin{pmatrix} R^{\alpha}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & K^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) = \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & K^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) = \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & K^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) = \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) + \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) + \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) + \begin{pmatrix} R^{\beta}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & R^{\beta}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) + \begin{pmatrix} R^{\alpha}_{II}(\vec{r},E) & R^{\beta}_{II}(\vec{r},E) \\ R^{\alpha}_{I2}(\vec{r},E) & R^{\alpha}_{I2}(\vec{r},E) \end{pmatrix}^{-1} \\ K^{\alpha}_{I2}(\vec{r},E) & R^{\alpha}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{I2}(\vec{r},E) + \begin{pmatrix} R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \\ R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) + \begin{pmatrix} R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \\ R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) + \begin{pmatrix} R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \\ R^{\alpha}_{II}(\vec{r},E) & R^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{r},E) \end{pmatrix}^{-1} K^{\alpha}_{II}(\vec{$$